Ronald J M M Does

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8833676/publications.pdf

Version: 2024-02-01

85 papers

2,437 citations

218381 26 h-index 223531 46 g-index

89 all docs 89 docs citations

89 times ranked 1075 citing authors

#	Article	IF	CITATIONS
1	Predictive monitoring using machine learning algorithms and a realâ€life example on schizophrenia. Quality and Reliability Engineering International, 2022, 38, 1302-1317.	1.4	5
2	Nonparametric control of the conditional performance in statistical process monitoring. Journal of Quality Technology, 2020, 52, 355-369.	1.8	9
3	A head-to-head comparison of the out-of-control performance of control charts adjusted for parameter estimation. Quality Engineering, 2020, 32, 643-652.	0.7	5
4	Multilevel process monitoring: A case study to predict student success or failure. Journal of Quality Technology, 2020, , 1-17.	1.8	4
5	On the design of control charts with guaranteed conditional performance under estimated parameters. Quality and Reliability Engineering International, 2020, 36, 2610-2620.	1.4	16
6	An alternative design of the two-sided CUSUM chart for monitoring the mean when parameters are estimated. Computers and Industrial Engineering, 2019, 137, 106042.	3.4	13
7	Guaranteed in ontrol performance of the EWMA chart for monitoring the mean. Quality and Reliability Engineering International, 2019, 35, 1144-1160.	1.4	13
8	The effect of continuously updating control chart limits on control chart performance. Quality and Reliability Engineering International, 2019, 35, 1117-1128.	1.4	8
9	The performance of control charts for large nonâ€normally distributed datasets. Quality and Reliability Engineering International, 2018, 34, 979-996.	1.4	15
10	On guaranteed in-control performance for the Shewhart X and control charts. Journal of Quality Technology, 2018, 50, 130-132.	1.8	17
11	Discussion of "Quality and statistical thinking in a parliament and beyond― Quality Engineering, 2018, 30, 27-33.	0.7	1
12	Shewhart control charts for dispersion adjusted for parameter estimation. IISE Transactions, 2017, 49, 838-848.	1.6	41
13	Guaranteed In-Control Performance for the Shewhart <i>X</i> and <i>X</i> Control Charts. Journal of Quality Technology, 2017, 49, 155-171.	1.8	53
14	Robust point location estimators for the EWMA control chart. Quality Technology and Quantitative Management, 2016, 13, 29-38.	1.1	12
15	Inter-industry generic Lean Six Sigma project definitions. International Journal of Lean Six Sigma, 2016, 7, 369-393.	2.4	16
16	Perceptions of Lean Six Sigma: A Multiple Case Study in the Financial Services Industry. Quality Management Journal, 2016, 23, 29-44.	0.9	16
17	Correction factors for Shewhart and control charts to achieve desired unconditional ARL. International Journal of Production Research, 2016, 54, 7464-7479.	4.9	19
18	A comparative study of memory-type control charts under normal and contaminated normal environments. Quality and Reliability Engineering International, 2016, 32, 1347-1356.	1.4	9

#	Article	IF	Citations
19	Quality quandaries: Improving a customer value stream at a financial service provider. Quality Engineering, 2016, 28, 155-163.	0.7	10
20	Mixed Cumulative Sum–Exponentially Weighted Moving Average Control Charts: An Efficient Way of Monitoring Process Location. Quality and Reliability Engineering International, 2015, 31, 1407-1421.	1.4	83
21	A Robust Phase I Exponentially Weighted Moving Average Chart for Dispersion. Quality and Reliability Engineering International, 2015, 31, 989-999.	1.4	18
22	Enhancing the Performance of Exponentially Weighted Moving Average Charts: Discussion. Quality and Reliability Engineering International, 2015, 31, 721-722.	1.4	6
23	Quality Quandaries: Realizing Strategic Focal Points at a Business School. Quality Engineering, 2015, 27, 267-273.	0.7	2
24	Quality Quandaries: Precision and Accuracy of Ear Thermometry. Quality Engineering, 2015, 27, 512-521.	0.7	2
25	Quality Quandaries: Improving Revenue by Attracting More Clients Online. Quality Engineering, 2015, 27, 130-138.	0.7	3
26	Discussion of "An Emerging Science of Improvement in Health Care― Quality Engineering, 2015, 27, 35-40.	0.7	4
27	Robust CUSUM Control Charting for Process Dispersion. Quality and Reliability Engineering International, 2015, 31, 369-379.	1.4	19
28	Quality Quandaries: Increasing the First Time Fix Rate in a Customer Contact Center. Quality Engineering, 2015, 27, 393-400.	0.7	2
29	Special Issue on the First Stu Hunter Research Conference. Quality Engineering, 2014, 26, 2-4.	0.7	0
30	Quality Quandaries: A Stepwise Approach for Setting Up a Robust Shewhart Location Control Chart. Quality Engineering, 2014, 26, 246-252.	0.7	11
31	An EWMA-Type Control Chart for Monitoring the Process Mean Using Auxiliary Information. Communications in Statistics - Theory and Methods, 2014, 43, 3485-3498.	0.6	117
32	Memory‶ype Control Charts for Monitoring the Process Dispersion. Quality and Reliability Engineering International, 2014, 30, 623-632.	1.4	29
33	Quality Quandaries: How to Set Up a Robust Shewhart Control Chart for Dispersion?. Quality Engineering, 2014, 26, 130-136.	0.7	11
34	Quality Quandaries: On the Application of Different Ranked Set Sampling Schemes. Quality Engineering, 2014, 26, 370-378.	0.7	30
35	Quality Quandaries: Improving the Overall Equipment Effectiveness at a Pharmaceutical Company. Quality Engineering, 2014, 26, 478-483.	0.7	5
36	A Robust Estimator for Location in Phase I Based on an EWMA Chart. Journal of Quality Technology, 2014, 46, 302-316.	1.8	18

#	Article	IF	CITATIONS
37	The usefulness of lean six sigma to the development of a clinical pathway for hip fractures. Journal of Evaluation in Clinical Practice, 2013, 19, 909-914.	0.9	52
38	Mixed Exponentially Weighted Moving Average–Cumulative Sum Charts for Process Monitoring. Quality and Reliability Engineering International, 2013, 29, 345-356.	1.4	160
39	CSâ€EWMA Chart for Monitoring Process Dispersion. Quality and Reliability Engineering International, 2013, 29, 653-663.	1.4	55
40	Efficient power computation for r out of m runs rules schemes. Computational Statistics, 2013, 28, 667-681.	0.8	21
41	A Robust Control Chart . Quality and Reliability Engineering International, 2013, 29, 951-970.	1.4	19
42	Quality Quandaries: Shortening the Throughput Time of a Hospital's Billing Process. Quality Engineering, 2013, 25, 188-193.	0.7	9
43	Measuring healthcare quality: the challenges. International Journal of Health Care Quality Assurance, 2013, 26, 269-278.	0.2	6
44	Robust CUSUM Control Charting. Quality Engineering, 2013, 25, 211-224.	0.7	42
45	Control charts for location based on different sampling schemes. Journal of Applied Statistics, 2013, 40, 483-494.	0.6	74
46	Quality Quandaries: Streamlining the Procurement Process at a Media and Entertainment Company. Quality Engineering, 2013, 25, 455-460.	0.7	1
47	Quality Quandaries: Deploying Operational Excellence at a Financial Service Provider. Quality Engineering, 2013, 25, 298-306.	0.7	12
48	Quality Quandaries: Reducing Work in Process at an Emergency Assistance Center. Quality Engineering, 2012, 25, 78-84.	0.7	4
49	Improving processes in financial service organizations: where to begin?. International Journal of Quality and Reliability Management, 2012, 29, 981-999.	1.3	23
50	Quality Quandaries*: The Case of Premature Drill Wear Out. Quality Engineering, 2012, 24, 354-359.	0.7	6
51	Quality Quandaries: Reducing Overuse of Diagnostic Tests for Trauma Patients. Quality Engineering, 2012, 24, 558-563.	0.7	8
52	Quality Quandaries*: An Efficient Public Sector. Quality Engineering, 2012, 24, 431-435.	0.7	5
53	Quality Quandaries: Personal Injuries: A Case Study. Quality Engineering, 2012, 24, 102-106.	0.7	4
54	A Robust Standard Deviation Control Chart. Technometrics, 2012, 54, 73-82.	1.3	45

#	Article	IF	CITATIONS
55	Quality Quandaries: Design for Six Sigma: Method and Application. Quality Engineering, 2011, 23, 204-211.	0.7	16
56	Design and Analysis of Control Charts for Standard Deviation with Estimated Parameters. Journal of Quality Technology, 2011, 43, 307-333.	1.8	64
57	Robust Location Estimators for the Å ^a Control Chart. Journal of Quality Technology, 2011, 43, 363-379.	1.8	45
58	Quality Quandaries: Streamlining the Path to Optimal Care for Cardiovascular Patients. Quality Engineering, 2011, 23, 388-394.	0.7	8
59	Improving the performance of CUSUM charts. Quality and Reliability Engineering International, 2011, 27, 415-424.	1.4	88
60	Enhancing the performance of EWMA charts. Quality and Reliability Engineering International, 2011, 27, 821-833.	1.4	97
61	On the performance of different control charting rules. Quality and Reliability Engineering International, 2011, 27, 1059-1067.	1.4	51
62	Process improvement in healthcare: overall resource efficiency. Quality and Reliability Engineering International, 2011, 27, 1095-1106.	1.4	45
63	Quality Quandaries: Cost and Quality in Postal Service. Quality Engineering, 2011, 23, 302-308.	0.7	2
64	Generic Project Definitions for Improvement of Health Care Delivery. Quality Management in Health Care, 2011, 20, 152-164.	0.4	34
65	The <i>XÌ,,</i> control chart under nonâ€normality. Quality and Reliability Engineering International, 2010, 26, 167-176.	1.4	32
66	Quality Quandaries: Interpretation of Signals from Runs Rules in Shewhart Control Charts. Quality Engineering, 2010, 22, 351-357.	0.7	4
67	Quality Quandaries: Improving the Invoicing Process of a Consulting Company. Quality Engineering, 2010, 22, 214-221.	0.7	6
68	Discussion of "Statistical Thinking and Methods in Quality Improvement: A Look to the Future― Quality Engineering, 2010, 22, 130-132.	0.7	1
69	Quality Quandaries: Lean Nursing. Quality Engineering, 2010, 23, 94-99.	0.7	15
70	Generic Lean Six Sigma project definitions in publishing. International Journal of Lean Six Sigma, 2010, 1, 39-55.	2.4	16
71	Quality Quandariesâ^—: Efficiency Improvement in a Nursing Department. Quality Engineering, 2009, 21, 222-228.	0.7	16
72	A process variability control chart. Computational Statistics, 2009, 24, 345-368.	0.8	50

#	Article	IF	Citations
73	Design schemes for the Xì,, control chart. Quality and Reliability Engineering International, 2009, 25, 581-594.	1.4	28
74	Quality Quandaries*: A Gage R&R Study in a Hospital. Quality Engineering, 2009, 22, 46-53.	0.7	23
75	Reducing Start Time Delays in Operating Rooms. Journal of Quality Technology, 2009, 41, 95-109.	1.8	36
76	Quality Quandariesâ^—: The Availability of Infusion Pumps in a Hospital. Quality Engineering, 2009, 21, 471-477.	0.7	10
77	An Alternative to the Bivariate Control Chart for Process Dispersion. Quality Engineering, 2008, 21, 63-71.	0.7	21
78	Quality Quandaries*: Health CareQualityâ€"Reducing the Lengthof Stay at a Hospital. Quality Engineering, 2008, 21, 117-131.	0.7	19
79	Generic Lean Six Sigma Project Definitions in Financial Services. Quality Management Journal, 2008, 15, 32-45.	0.9	38
80	Lean Six Sigma in Healthcare. Journal for Healthcare Quality: Official Publication of the National Association for Healthcare Quality, 2006, 28, 4-11.	0.3	355
81	A Semi-Bayesian Method for Shewhart Individual Control Charts. Quality Technology and Quantitative Management, 2006, 3, 111-125.	1.1	7
82	Six Sigma in a Dutch Hospital: Does It Work in the Nursing Department?. Quality and Reliability Engineering International, 2004, 20, 419-426.	1.4	42
83	Comparing Nonmanufacturing with Traditional Applications of Six Sigma. Quality Engineering, 2002, 15, 177-182.	0.7	68
84	Effective application of $Q(R)$ charts in low-volume manufacturing. Quality and Reliability Engineering International, 1999, 15, 175-190.	1.4	4
85	Discussion of "Bridging the Gap between Theory and Practice in Basic Statistical Process Monitoringâ€. Quality Engineering, 0, , 0-0.	0.7	O