## **Jimmy Soares**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8833528/publications.pdf

Version: 2024-02-01



LIMMY SOADES

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Harvesting of Chlorella sorokiniana BR001 cultivated in a low-nitrogen medium using different<br>techniques. Ciencia Rural, 2022, 52, .                                                                                          | 0.3 | 0         |
| 2  | Biochemical and morphological characterization of freshwater microalga Tetradesmus obliquus<br>(Chlorophyta: Chlorophyceae). Protoplasma, 2022, 259, 937-948.                                                                    | 1.0 | 4         |
| 3  | Microalgae proteins: production, separation, isolation, quantification, and application in food and feed. Critical Reviews in Food Science and Nutrition, 2021, 61, 1976-2002.                                                   | 5.4 | 138       |
| 4  | Dilute sulfuric acid hydrolysis of Chlorella vulgaris biomass improves the multistage liquid-liquid extraction of lipids. Biomass Conversion and Biorefinery, 2021, 11, 2485-2497.                                               | 2.9 | 11        |
| 5  | Strain screening and ozone pretreatment for algae farming in wastewaters from sugarcane ethanol biorefinery. Journal of Cleaner Production, 2021, 282, 124522.                                                                   | 4.6 | 16        |
| 6  | Optimized extraction of neutral carbohydrates, crude lipids and photosynthetic pigments from the wet biomass of the microalga Scenedesmus obliquus BR003. Separation and Purification Technology, 2021, 269, 118711.             | 3.9 | 13        |
| 7  | Pilot-scale biorefining of Scenedesmus obliquus for the production of lipids and proteins. Separation and Purification Technology, 2021, 270, 118775.                                                                            | 3.9 | 9         |
| 8  | Low-cost and versatile sensor based on multi-wavelengths for real-time estimation of microalgal<br>biomass concentration in open and closed cultivation systems. Computers and Electronics in<br>Agriculture, 2020, 176, 105641. | 3.7 | 12        |
| 9  | Extraction of proteins from the microalga Scenedesmus obliquus BR003 followed by lipid extraction of the wet deproteinized biomass using hexane and ethyl acetate. Bioresource Technology, 2020, 307, 123190.                    | 4.8 | 30        |
| 10 | Alternative fertilizer-based growth media support high lipid contents without growth impairment in Scenedesmus obliquus BR003. Bioprocess and Biosystems Engineering, 2020, 43, 1123-1131.                                       | 1.7 | 8         |
| 11 | Drying of microalga Scenedesmus obliquus BR003 in a gas dryer at low temperatures. Ciencia Rural, 2019, 49, .                                                                                                                    | 0.3 | 1         |
| 12 | Combination of trace elements and salt stress in different cultivation modes improves the lipid productivity of Scenedesmus spp Bioresource Technology, 2019, 289, 121644.                                                       | 4.8 | 34        |
| 13 | Scenedesmus sp. cultivation using commercial-grade ammonium sources. Annals of Microbiology, 2018, 68, 35-45.                                                                                                                    | 1.1 | 22        |
| 14 | Fed-batch production of green coconut hydrolysates for high-gravity second-generation bioethanol fermentation with cellulosic yeast. Bioresource Technology, 2017, 244, 234-242.                                                 | 4.8 | 22        |
| 15 | Green coconut mesocarp pretreated by an alkaline process as raw material for bioethanol production. Bioresource Technology, 2016, 216, 744-753.                                                                                  | 4.8 | 24        |