Angela Ivask

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8833258/angela-ivask-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

71	7,2 07 citations	37	84
papers		h-index	g-index
88 ext. papers	8,050 ext. citations	6.7 avg, IF	5.9 L-index

#	Paper	IF	Citations
71	Antimicrobial Activity of Commercial Photocatalytic SaniTiselWindow Glass. <i>Catalysts</i> , 2022 , 12, 197	4	Ο
7°	Cellular binding, uptake and biotransformation of silver nanoparticles in human T lymphocytes. <i>Nature Nanotechnology</i> , 2021 , 16, 926-932	28.7	18
69	Selection of resistance by antimicrobial coatings in the healthcare setting. <i>Journal of Hospital Infection</i> , 2020 , 106, 115-125	6.9	25
68	Selective antibiofilm properties and biocompatibility of nano-ZnO and nano-ZnO/Ag coated surfaces. <i>Scientific Reports</i> , 2020 , 10, 13478	4.9	15
67	Comparison of Mechanical and Antibacterial Properties of TiO2/Ag Ceramics and Ti6Al4V-TiO2/Ag Composite Materials Using Combined SLM-SPS Techniques. <i>Metals</i> , 2019 , 9, 874	2.3	14
66	Quantitative Measurement of Cell-Nanoparticle Interactions Using Mass Cytometry. <i>Methods in Molecular Biology</i> , 2019 , 1989, 227-241	1.4	3
65	Propidium iodide staining underestimates viability of adherent bacterial cells. <i>Scientific Reports</i> , 2019 , 9, 6483	4.9	84
64	Potential ecotoxicological effects of antimicrobial surface coatings: a literature survey backed up by analysis of market reports. <i>PeerJ</i> , 2019 , 7, e6315	3.1	16
63	Microfluidic Cell Microarray Platform for High Throughput Analysis of Particle-Cell Interactions. <i>Analytical Chemistry</i> , 2018 , 90, 4338-4347	7.8	15
62	Methodologies and approaches for the analysis of cell-nanoparticle interactions. <i>Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology</i> , 2018 , 10, e1486	9.2	20
61	Ligand-Doped Copper Oxo-hydroxide Nanoparticles are Effective Antimicrobials. <i>Nanoscale Research Letters</i> , 2018 , 13, 111	5	4
60	UVA-induced antimicrobial activity of ZnO/Ag nanocomposite covered surfaces. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 169, 222-232	6	24
59	Antimicrobial potency of differently coated 10 and 50 nm silver nanoparticles against clinically relevant bacteria Escherichia coli and Staphylococcus aureus. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 170, 401-410	6	41
58	Uptake and transcytosis of functionalized superparamagnetic iron oxide nanoparticles in an in vitro blood brain barrier model. <i>Biomaterials Science</i> , 2018 , 6, 314-323	7.4	24
57	Rapid in situ assessment of Cu-ion mediated effects and antibacterial efficacy of copper surfaces. <i>Scientific Reports</i> , 2018 , 8, 8172	4.9	33
56	Complete transformation of ZnO and CuO nanoparticles in culture medium and lymphocyte cells during toxicity testing. <i>Nanotoxicology</i> , 2017 , 11, 150-156	5.3	20
55	Dual-Action Cancer Therapy with Targeted Porous Silicon Nanovectors. <i>Small</i> , 2017 , 13, 1701201	11	24

(2015-2017)

54	Mechanisms of toxic action of silver nanoparticles in the protozoan Tetrahymena thermophila: From gene expression to phenotypic events. <i>Environmental Pollution</i> , 2017 , 225, 481-489	9.3	29
53	Pan-European inter-laboratory studies on a panel of in vitro cytotoxicity and pro-inflammation assays for nanoparticles. <i>Archives of Toxicology</i> , 2017 , 91, 2315-2330	5.8	25
52	Crossed flow microfluidics for high throughput screening of bioactive chemical-cell interactions. <i>Lab on A Chip</i> , 2017 , 17, 501-510	7.2	15
51	Gold Nanocluster-Mediated Cellular Death under Electromagnetic Radiation. <i>ACS Applied Materials</i> & Samp; Interfaces, 2017 , 9, 41159-41167	9.5	24
50	Single Cell Level Quantification of Nanoparticle-Cell Interactions Using Mass Cytometry. <i>Analytical Chemistry</i> , 2017 , 89, 8228-8232	7.8	21
49	The Use of Microfluidics in Cytotoxicity and Nanotoxicity Experiments. <i>Micromachines</i> , 2017 , 8, 124	3.3	15
48	Proactive Approach for Safe Use of Antimicrobial Coatings in Healthcare Settings: Opinion of the COST Action Network AMiCI. <i>International Journal of Environmental Research and Public Health</i> , 2017 , 14,	4.6	42
47	Optimization of binding B-lymphocytes in a microfluidic channel: surface modification, stasis time and shear response. <i>Biofabrication</i> , 2017 , 10, 014101	10.5	10
46	Bacterial polysaccharide levan as stabilizing, non-toxic and functional coating material for microelement-nanoparticles. <i>Carbohydrate Polymers</i> , 2016 , 136, 710-20	10.3	44
45	Multilaboratory evaluation of 15 bioassays for (eco)toxicity screening and hazard ranking of engineered nanomaterials: FP7 project NANOVALID. <i>Nanotoxicology</i> , 2016 , 10, 1229-42	5.3	59
44	Synthesis and in vitro properties of iron oxide nanoparticles grafted with brushed phosphorylcholine and polyethylene glycol. <i>Polymer Chemistry</i> , 2016 , 7, 1931-1944	4.9	29
43	Sorption of silver nanoparticles to laboratory plastic during (eco)toxicological testing. <i>Nanotoxicology</i> , 2016 , 10, 385-90	5.3	16
42	A Molecular Probe for the Detection of Polar Lipids in Live Cells. <i>PLoS ONE</i> , 2016 , 11, e0161557	3.7	26
41	Quantitative multimodal analyses of silver nanoparticle-cell interactions: Implications for cytotoxicity. <i>NanoImpact</i> , 2016 , 1, 29-38	5.6	17
40	Toxicity of metal oxide nanoparticles in Escherichia coli correlates with conduction band and hydration energies. <i>Environmental Science & Environmental Science & Environment</i>	10.3	111
39	Cu Nanoparticles Have Different Impacts in Escherichia coli and Lactobacillus brevis than Their Microsized and Ionic Analogues. <i>ACS Nano</i> , 2015 , 9, 7215-25	16.7	92
38	DNA melting and genotoxicity induced by silver nanoparticles and graphene. <i>Chemical Research in Toxicology</i> , 2015 , 28, 1023-35	4	60
37	Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thin films: effects on Escherichia coli cells and fatty acids. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2015 , 142, 178-85	6.7	151

36	NanoE-Tox: New and in-depth database concerning ecotoxicity of nanomaterials. <i>Beilstein Journal of Nanotechnology</i> , 2015 , 6, 1788-804	3	93
35	Toxicity of 11 Metal Oxide Nanoparticles to Three Mammalian Cell Types In Vitro. <i>Current Topics in Medicinal Chemistry</i> , 2015 , 15, 1914-29	3	151
34	A novel method for comparison of biocidal properties of nanomaterials to bacteria, yeasts and algae. <i>Journal of Hazardous Materials</i> , 2015 , 286, 75-84	12.8	66
33	Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: a comparative review. <i>Nanotoxicology</i> , 2014 , 8 Suppl 1, 57-71	5.3	247
32	Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. <i>ACS Nano</i> , 2014 , 8, 374-86	16.7	343
31	Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. <i>PLoS ONE</i> , 2014 , 9, e102108	3.7	388
30	Extracellular conversion of silver ions into silver nanoparticles by protozoan Tetrahymena thermophila. <i>Environmental Sciences: Processes and Impacts</i> , 2013 , 15, 244-50	4.3	23
29	Mapping the dawn of nanoecotoxicological research. <i>Accounts of Chemical Research</i> , 2013 , 46, 823-33	24.3	126
28	Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. <i>Archives of Toxicology</i> , 2013 , 87, 1181-200	5.8	827
27	Dissolution of silver nanowires and nanospheres dictates their toxicity to Escherichia coli. <i>BioMed Research International</i> , 2013 , 2013, 819252	3	32
26	Particle-cell contact enhances antibacterial activity of silver nanoparticles. <i>PLoS ONE</i> , 2013 , 8, e64060	3.7	175
25	Sub-toxic effects of CuO nanoparticles on bacteria: kinetics, role of Cu ions and possible mechanisms of action. <i>Environmental Pollution</i> , 2012 , 169, 81-9	9.3	157
24	Environmental hazard of oil shale combustion fly ash. <i>Journal of Hazardous Materials</i> , 2012 , 229-230, 192-200	12.8	25
23	Genome-wide bacterial toxicity screening uncovers the mechanisms of toxicity of a cationic polystyrene nanomaterial. <i>Environmental Science & Environmental Science & Environm</i>	10.3	44
22	Metal-Containing Nano-Antimicrobials: Differentiating the Impact of Solubilized Metals and Particles 2012 , 253-290		17
21	LuxCDABEtransformed constitutively bioluminescent Escherichia coli for toxicity screening: comparison with naturally luminous Vibrio fischeri. <i>Sensors</i> , 2011 , 11, 7865-78	3.8	43
20	Bioavailability of Cd in 110 polluted topsoils to recombinant bioluminescent sensor bacteria: effect of soil particulate matter. <i>Journal of Soils and Sediments</i> , 2011 , 11, 231-237	3.4	27
19	The effect of composition of different ecotoxicological test media on free and bioavailable copper from CuSO4 and CuO nanoparticles: comparative evidence from a Cu-selective electrode and a Cu-biosensor. Sensors, 2011, 11, 10502-21	3.8	43

(2001-2010)

18	Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. <i>Analytical and Bioanalytical Chemistry</i> , 2010 , 398, 701-16	4.4	150
17	Effects of rhamnolipids from Pseudomonas aeruginosa DS10-129 on luminescent bacteria: toxicity and modulation of cadmium bioavailability. <i>Microbial Ecology</i> , 2010 , 59, 588-600	4.4	32
16	Ecotoxicity of nanoparticles of CuO and ZnO in natural water. <i>Environmental Pollution</i> , 2010 , 158, 41-7	9.3	343
15	A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing. <i>BMC Biotechnology</i> , 2009 , 9, 41	3.5	143
14	Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. <i>Toxicology in Vitro</i> , 2009 , 23, 1116-22	3.6	464
13	Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. <i>Chemosphere</i> , 2008 , 71, 1308-16	8.4	1126
12	Interplay of different transporters in the mediation of divalent heavy metal resistance in Pseudomonas putida KT2440. <i>Journal of Bacteriology</i> , 2008 , 190, 2680-9	3.5	77
11	Bioavailability of Cd, Zn and Hg in Soil to Nine Recombinant Luminescent Metal Sensor Bacteria. <i>Sensors</i> , 2008 , 8, 6899-6923	3.8	44
10	Biotests and Biosensors for Ecotoxicology of Metal Oxide Nanoparticles: A Minireview. <i>Sensors</i> , 2008 , 8, 5153-5170	3.8	176
9	Fibre-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain. <i>Biosensors and Bioelectronics</i> , 2007 , 22, 1396	-4 02 8	85
8	Analysis of bioavailable phenols from natural samples by recombinant luminescent bacterial sensors. <i>Chemosphere</i> , 2006 , 64, 1910-9	8.4	56
7	Biotests and biosensors in ecotoxicological risk assessment of field soils polluted with zinc, lead, and cadmium. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 2973-82	3.8	52
6	Lead and Cu in contaminated urban soils: extraction with chemical reagents and bioluminescent bacteria and yeast. <i>Science of the Total Environment</i> , 2005 , 350, 194-203	10.2	31
5	Analysis of sorption and bioavailability of different species of mercury on model soil components using XAS techniques and sensor bacteria. <i>Analytical and Bioanalytical Chemistry</i> , 2005 , 382, 1541-8	4.4	17
4	Detection of bioavailable heavy metals in EILATox-Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. <i>Journal of Applied Toxicology</i> , 2004 , 24, 333-42	4.1	119
3	Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters. <i>Chemosphere</i> , 2004 , 55, 147-56	8.4	81
2	Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil. <i>Soil Biology and Biochemistry</i> , 2002 , 34, 1439-1447	7.5	130
1	Detection of organomercurials with sensor bacteria. <i>Analytical Chemistry</i> , 2001 , 73, 5168-71	7.8	78