List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8833246/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids and Surfaces B: Biointerfaces, 2012, 89, 79-85.	5.0	354
2	Oxidation and reduction of multiwalled carbon nanotubes — preparation and characterization. Materials Characterization, 2010, 61, 185-191.	4.4	220
3	Nanocomposite of cement/graphene oxide – Impact on hydration kinetics and Young's modulus. Construction and Building Materials, 2015, 78, 234-242.	7.2	168
4	Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors. Journal of Power Sources, 2019, 412, 1-9.	7.8	150
5	Iron filled single-wall carbon nanotubes – A novel ferromagnetic medium. Chemical Physics Letters, 2006, 421, 129-133.	2.6	130
6	Direct conversion of biomass to nanoporous activated biocarbons for high CO2 adsorption and supercapacitor applications. Applied Surface Science, 2019, 497, 143722.	6.1	130
7	Synthesis, Growth Mechanism, and Electrochemical Properties of Hollow Mesoporous Carbon Spheres with Controlled Diameter. Journal of Physical Chemistry C, 2011, 115, 17717-17724.	3.1	125
8	Photocatalytic hydrogen generation over alkaline-earth titanates in the presence of electron donors. International Journal of Hydrogen Energy, 2008, 33, 1797-1802.	7.1	112
9	Efficient production of B-substituted single-wall carbon nanotubes. Chemical Physics Letters, 2003, 378, 516-520.	2.6	95
10	Reduced diameter distribution of single-wall carbon nanotubes by selective oxidation. Chemical Physics Letters, 2002, 363, 567-572.	2.6	93
11	Oxide-Driven Carbon Nanotube Growth in Supported Catalyst CVD. Journal of the American Chemical Society, 2007, 129, 15772-15773.	13.7	91
12	Synthesis and electronic properties of B-doped single wall carbon nanotubes. Carbon, 2004, 42, 1123-1126.	10.3	81
13	CVD generated mesoporous hollow carbon spheres as supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 396, 246-250.	4.7	68
14	Magnetic Silica Nanotubes: Synthesis, Drug Release, and Feasibility for Magnetic Hyperthermia. ACS Applied Materials & Interfaces, 2012, 4, 2303-2309.	8.0	61
15	The pH influence on photocatalytic decomposition of organic dyes over A11 and P25 titanium dioxide. Applied Catalysis B: Environmental, 2003, 45, 293-300.	20.2	59
16	Synthesis and Characterization of Nitrogen-doped Carbon Nanotubes Derived from g-C3N4. Materials, 2020, 13, 1349.	2.9	58
17	Synthesis and photocatalytic performance of TiO2 nanospheres–graphene nanocomposite under visible and UV light irradiation. Journal of Materials Science, 2012, 47, 3185-3190.	3.7	56
18	Exfoliated Graphite as a New Sorbent for Removal of Engine Oils from Wastewater. Spill Science and Technology Bulletin, 2003, 8, 569-571.	0.4	49

#	Article	IF	CITATIONS
19	Synthesis, characterization, and photocatalytic properties of core/shell mesoporous silica nanospheres supporting nanocrystalline titania. Journal of Nanoparticle Research, 2011, 13, 5899-5908.	1.9	48
20	Silver filled single-wall carbon nanotubes—synthesis, structural and electronic properties. Nanotechnology, 2006, 17, 2415-2419.	2.6	47
21	Preparation, characterization and photocatalytic activity of metal-loaded NaNbO3. Journal of Physics and Chemistry of Solids, 2011, 72, 117-123.	4.0	41
22	Studies of Exfoliated Graphite (EG) for Heavy Oil Sorption. Molecular Crystals and Liquid Crystals, 2000, 340, 113-119.	0.3	38
23	Filling of carbon nanotubes for bioâ€applications. Physica Status Solidi (B): Basic Research, 2007, 244, 4315-4318.	1.5	38
24	New easy way preparation of core/shell structured SnO2@carbon spheres and application for lithium-ion batteries. Journal of Power Sources, 2012, 216, 475-481.	7.8	38
25	Pd supported ordered mesoporous hollow carbon spheres (OMHCS) for hydrogen storage. Chemical Physics Letters, 2016, 647, 14-19.	2.6	36
26	Catalyst size dependencies for carbon nanotube synthesis. Physica Status Solidi (B): Basic Research, 2007, 244, 3911-3915.	1.5	35
27	Cisplatin filled multiwalled carbon nanotubes – a novel molecular hybrid of anticancer drug container. European Physical Journal B, 2010, 75, 141-146.	1.5	33
28	In situ deposition of Pd nanoparticles with controllable diameters in hollow carbon spheres for hydrogen storage. International Journal of Hydrogen Energy, 2013, 38, 16179-16184.	7.1	33
29	Enhancement of thermal stability of multiwalled carbon nanotubes via different silanization routes. Journal of Alloys and Compounds, 2010, 500, 117-124.	5.5	32
30	Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors. Nanoscale Research Letters, 2012, 7, 269.	5.7	32
31	Enhancement of the structure stability of MOFâ€5 confined to multiwalled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2010, 247, 2664-2668.	1.5	31
32	Graphitic Carbon Nitride and Titanium Dioxide Modified with 1 D and 2 D Carbon Structures for Photocatalysis. ChemSusChem, 2019, 12, 612-620.	6.8	31
33	Carbonâ€Nanotubeâ€Based Stimuliâ€Responsive Controlledâ€Release System. Chemistry - A European Journal, 2011, 17, 4454-4459.	3.3	28
34	Facilitating the CVD synthesis of seamless double-walled carbon nanotubes. Nanotechnology, 2007, 18, 275610.	2.6	26
35	Photocatalytic performance of titania nanospheres deposited on graphene in coumarin oxidation reaction. Materials Science-Poland, 2012, 30, 32-38.	1.0	23
36	Effect of Pd loading on hydrogen storage properties of disordered mesoporous hollow carbon spheres. International Journal of Hydrogen Energy, 2017, 42, 30461-30469.	7.1	23

#	Article	IF	CITATIONS
37	A Comparison of Hydrogen Storage in Pt, Pd and Pt/Pd Alloys Loaded Disordered Mesoporous Hollow Carbon Spheres. Nanomaterials, 2018, 8, 639.	4.1	22
38	Synthesis, characterization and photocatalytic properties of lithium tantalate. Materials Characterization, 2012, 68, 71-76.	4.4	21
39	Carbon nanotubes decorated by mesoporous cobalt oxide as electrode material for lithium-ion batteries. Chemical Physics Letters, 2015, 635, 185-189.	2.6	21
40	Facile synthesis of porous iron oxide/graphene hybrid nanocomposites and potential application in electrochemical energy storage. New Journal of Chemistry, 2017, 41, 13553-13559.	2.8	21
41	Poly(ethylene terephthalate) as a source for activated carbon. Polymers for Advanced Technologies, 1999, 10, 588-595.	3.2	20
42	Physicochemical and photocatalytic characterization of mesoporous carbon/titanium dioxide spheres. Diamond and Related Materials, 2020, 101, 107551.	3.9	20
43	Formation of novel nanostructures using carbon nanotubes as a frame. Synthetic Metals, 2005, 153, 345-348.	3.9	19
44	On the distribution of aluminium and magnesium oxides in wustite catalysts for ammonia synthesis. Applied Catalysis A: General, 2003, 247, 9-15.	4.3	17
45	Modifying CVD synthesised carbon nanotubes via the carbon feed rate. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2227-2230.	2.7	17
46	Advances in engineering of diameter and distribution of the number of walls of carbon nanotubes in alcohol CVD. Nanotechnology, 2008, 19, 365605.	2.6	17
47	Study on the properties of iron-cobalt alumina supported catalyst for ammonia. Journal of Chemical Technology and Biotechnology, 1994, 59, 73-81.	3.2	15
48	On the formation process of silicon carbide nanophases via hydrogenated thermally induced templated synthesis. Applied Physics A: Materials Science and Processing, 2005, 80, 1653-1656.	2.3	15
49	Nanoconfinement Induced Formation of Core/Shell Structured Mesoporous Carbon Spheres Coated with Solid Carbon Shell. ACS Applied Materials & Interfaces, 2013, 5, 3042-3047.	8.0	15
50	Antibacterial performance of nanocrystallined titania confined in mesoporous silica nanotubes. Biomedical Microdevices, 2014, 16, 449-458.	2.8	15
51	Effect of cobalt on the morphology and activity of fused iron catalyst for ammonia synthesis. Applied Catalysis A: General, 1994, 112, 149-160.	4.3	14
52	Cobalt promoted fused iron catalyst for ammonia synthesis. Solid State Sciences, 2000, 2, 233-239.	0.7	13
53	A nanoscaled contactless thermometer for biological systems. Physica Status Solidi (B): Basic Research, 2007, 244, 4092-4096.	1.5	13
54	Iron filled carbon nanostructures from different precursors. Energy Conversion and Management, 2008, 49, 2483-2486.	9.2	13

#	Article	IF	CITATIONS
55	Mechanism of <scp>M</scp> <i>_x</i> <scp>O</scp> _{<i>y</i>} nanoparticles/ <scp>CNT</scp> s for catalytic carbonization of polyethylene and application to flame retardancy. Journal of Applied Polymer Science, 2017, 134, 45233.	2.6	12
56	Influence of the substrate loading on the quality and diameter distribution of SWCNT in alcohol VD. Physica Status Solidi (B): Basic Research, 2007, 244, 3925-3929.	1.5	11
57	Surfactant free fractions of metallic and semiconducting single-walled carbon nanotubes via optimised gel chromatography. Materials Research Bulletin, 2012, 47, 687-691.	5.2	11
58	Iron filled singlewalled carbon nanotubes – synthesis and characteristic properties. Physica Status Solidi (B): Basic Research, 2006, 243, 3277-3280.	1.5	10
59	On the efficiency of bile salt for stable suspension and isolation ofÂsingle-walled carbon nanotubes—spectroscopic andÂmicroscopic investigations. Applied Physics A: Materials Science and Processing, 2010, 100, 505-510.	2.3	10
60	Fabrication method of parallel mesoporous carbon nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 377, 150-155.	4.7	10
61	Porous nanopeapod Pd catalyst with excellent stability and efficiency. Chemical Communications, 2017, 53, 740-742.	4.1	10
62	Bulk quantity and physical properties of boron nitride nanocapsules with a narrow size distribution. Carbon, 2005, 43, 615-621.	10.3	9
63	The effect of cobalt on the activity of iron catalyst supported on magnesium hydroxide carbonate (MHC) in the ammonia synthesis. Journal of Chemical Technology and Biotechnology, 1992, 54, 349-357.	3.2	9
64	Photocatalytic hydrogen generation over alkali niobates in the presence of organic compounds. Polish Journal of Chemical Technology, 2008, 10, 1-3.	0.5	9
65	Core/Shell Structure of Mesoporous Carbon Spheres and g-C3N4 for Acid Red 18 Decolorization. Catalysts, 2019, 9, 1007.	3.5	8
66	Modification of SiC based nanorods via a hydrogenated annealing process. Synthetic Metals, 2005, 153, 349-352.	3.9	7
67	Study on hydrogen uptake of functionalized carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3226-3229.	1.5	7
68	Catalyst-free synthesis, morphology evaluation and photocatalytic properties of pristine and calcinated titanate nanorods. Journal of Alloys and Compounds, 2011, 509, 5414-5419.	5.5	7
69	Synthesis and Characterization of K-Ta Mixed Oxides for Hydrogen Generation in Photocatalysis. International Journal of Photoenergy, 2012, 2012, 1-7.	2.5	7
70	Facile synthesis of hollow silica spheres with nanoholes. Dalton Transactions, 2013, 42, 6381.	3.3	7
71	Synthesis of carbon nanotubes via chemical vapor deposition by using rareearth metals as catalysts. Polish Journal of Chemical Technology, 2010, 12, 29-32.	0.5	6
72	Tuning Carbon Nanotubes Through Poor Metal Addition to Iron Catalysts in CVD. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 18, 37-44.	2.1	6

#	Article	IF	CITATIONS
73	Gel-based separation of single-walled carbon nanotubes for metallic and semiconducting fractions. Materials Research Bulletin, 2011, 46, 1535-1539.	5.2	6
74	The effect of cobalt on the reactants adsorption and activity of fused iron catalyst for ammonia synthesis. Catalysis Letters, 1995, 33, 255-268.	2.6	5
75	Synthesis and characterization of iron-filled multi-walled nanotubes. Materials Science-Poland, 2011, 29, 299-304.	1.0	5
76	Preparation, characterization and photocatalytic activity of Co3O4/LiNbO3 composite. Open Chemistry, 2013, 11, 920-926.	1.9	5
77	The effect of cobalt on the activation of fused iron catalyst for ammonia synthesis. Journal of Chemical Technology and Biotechnology, 1995, 64, 398-406.	3.2	4
78	A new preparation method of catalyst for ammonia synthesis. Applied Catalysis A: General, 1997, 156, 19-27.	4.3	4
79	"In situ―observations of carbon nanotube generation in CVD cell coupled to spectrometers. Physica Status Solidi (B): Basic Research, 2008, 245, 1931-1934.	1.5	4
80	Effect of time on the metal-support (Fe-MgO) interaction in CVD synthesis of single-walled carbon nanotubes. Chemical Papers, 2010, 64, .	2.2	4
81	Purification and fractionation of single-walled carbon nanotubes. Journal of Nanoparticle Research, 2011, 13, 5769-5780.	1.9	4
82	Selective oxidation of metallic single-walled carbon nanotubes. Chemical Papers, 2013, 67, .	2.2	4
83	0D, 1D, 2D molybdenum disulfide functionalized by 2D polymeric carbon nitride for photocatalytic water splitting. Nanotechnology, 2021, 32, 355703.	2.6	4
84	Single-walled carbon nanotubes fractionation via electrophoresis. Polish Journal of Chemical Technology, 2011, 13, 1-4.	0.5	3
85	Separation of surfactant functionalized single-walled carbon nanotubes via free solution electrophoresis method. Open Physics, 2011, 9, 325-329.	1.7	3
86	Creation of mesopores in carbon nanotubes with improved capacities for lithium ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 25071-25075.	2.8	3
87	PANI/NaTaO ₃ composite photocatalyst for enhanced hydrogen generation under UV light irradiation. Polish Journal of Chemical Technology, 2017, 19, 115-119.	0.5	3
88	Surface enhanced Raman spectroscopy of flat and curved carbon cluster. Physica Status Solidi (B): Basic Research, 2006, 243, 3142-3145.	1.5	2
89	Comparative study on purity evaluation of singlewall carbon nanotubes. Energy Conversion and Management, 2008, 49, 2490-2493.	9.2	2
90	Systematic study on synthesis and purification of double-walled carbon nanotubes synthesized via CVD. Materials Science-Poland, 2011, 29, 292-298.	1.0	2

#	Article	IF	CITATIONS
91	Purification, Dispersion and Biofunctionalization of Singlewall Carbon Nanotubes. Advances in Science and Technology, 2008, 57, 44-49.	0.2	1
92	Comparison of NaNbO ₃ and NaTaO ₃ as the photocatalysts in the reaction of hydrogen generation. Polish Journal of Chemical Technology, 2010, 12, 33-35.	0.5	1
93	Novel method controlled synthesis of silica coated carbon nanotubes. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 462-465.	1.8	1
94	New synthesis method of sword-sheath structured carbon nanotubes. , 2012, , .		1
95	Graphene-based electrochemical biosensing system for medical diagnostics. , 2017, , .		1
96	Thermally Induced Templated Synthesis for the Formation of SiC Nanotubes and more. AIP Conference Proceedings, 2004, , .	0.4	0