Susanne Hartmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/883297/publications.pdf Version: 2024-02-01

SUSANNE HADTMANN

#	Article	IF	CITATIONS
1	A semisynthetic glycoconjugate provides expanded cross-serotype protection against Streptococcus pneumoniae. Vaccine, 2022, 40, 1038-1046.	3.8	2
2	The Host Peritoneal Cavity Harbors Prominent Memory Th2 and Early Recall Responses to an Intestinal Nematode. Frontiers in Immunology, 2022, 13, 842870.	4.8	4
3	Whip- and pinworm infections elicit contrasting effector and distinct regulatory responses in wild house mice. International Journal for Parasitology, 2022, 52, 519-524.	3.1	4
4	Trilateral Relationship: Ascaris, Microbiota, and Host Cells. Trends in Parasitology, 2021, 37, 251-262.	3.3	14
5	Eosinophils are dispensable for the regulation of IgA and Th17 responses in <i>Giardia muris</i> infection. Parasite Immunology, 2021, 43, e12791.	1.5	4
6	The Worm-Specific Immune Response in Multiple Sclerosis Patients Receiving Controlled Trichuris suis Ova Immunotherapy. Life, 2021, 11, 101.	2.4	9
7	Early Immune Initiation by Porcine Cells following Toxoplasma gondii Infection versus TLR Ligation. Microorganisms, 2021, 9, 1828.	3.6	2
8	Lectin-Mediated Bacterial Modulation by the Intestinal Nematode Ascaris suum. International Journal of Molecular Sciences, 2021, 22, 8739.	4.1	2
9	Influence of Nutrition and Maternal Bonding on Postnatal Lung Development in the Newborn Pig. Frontiers in Immunology, 2021, 12, 734153.	4.8	6
10	A Helminth-Derived Chitinase Structurally Similar to Mammalian Chitinase Displays Immunomodulatory Properties in Inflammatory Lung Disease. Journal of Immunology Research, 2021, 2021, 1-24.	2.2	6
11	The domestic pig as humanâ€relevant large animal model to study adaptive antifungal immune responses against airborne <i>Aspergillus fumigatus</i> . European Journal of Immunology, 2020, 50, 1712-1728.	2.9	5
12	CD4+ Th immunogenicity of the Ascaris spp. secreted products. Npj Vaccines, 2020, 5, 25.	6.0	9
13	Influence of immune status on the airborne colonization of piglets with methicillin-resistant staphylococcus aureus (MRSA) clonal complex (CC) 398. European Journal of Microbiology and Immunology, 2020, 10, 1-10.	2.8	4
14	Neuronal impairment following chronic Toxoplasma gondii infection is aggravated by intestinal nematode challenge in an IFN-I³-dependent manner. Journal of Neuroinflammation, 2019, 16, 159.	7.2	20
15	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
16	A Novel Non-invasive Method to Detect RELM Beta Transcript in Gut Barrier Related Changes During a Gastrointestinal Nematode Infection. Frontiers in Immunology, 2019, 10, 445.	4.8	7
17	From Entry to Early Dissemination—Toxoplasma gondii's Initial Encounter With Its Host. Frontiers in Cellular and Infection Microbiology, 2019, 9, 46.	3.9	58
18	RORÎ ³ t+ Treg to Th17 ratios correlate with susceptibility to Giardia infection. Scientific Reports, 2019, 9, 20328.	3.3	14

SUSANNE HARTMANN

#	Article	IF	CITATIONS
19	Association of a PD-L2 Gene Polymorphism with Chronic Lymphatic Filariasis in a South Indian Cohort. American Journal of Tropical Medicine and Hygiene, 2019, 100, 344-350.	1.4	3
20	Macrophages in bone fracture healing: Their essential role in endochondral ossification. Bone, 2018, 106, 78-89.	2.9	413
21	Recognition of microbial viability via TLR8 drives TFH cell differentiation and vaccine responses. Nature Immunology, 2018, 19, 386-396.	14.5	139
22	Parasitic Nematodes Exert Antimicrobial Activity and Benefit From Microbiota-Driven Support for Host Immune Regulation. Frontiers in Immunology, 2018, 9, 2282.	4.8	57
23	Manipulation of the balance between Th2 and Th2/1 hybrid cells affects parasite nematode fitness in mice. European Journal of Immunology, 2018, 48, 1958-1964.	2.9	19
24	Micromanaging Immunity in the Murine Host vs. the Mosquito Vector: Microbiota-Dependent Immune Responses to Intestinal Parasites. Frontiers in Cellular and Infection Microbiology, 2018, 8, 308.	3.9	10
25	Factors associated with diversity, quantity and zoonotic potential of ectoparasites on urban mice and voles. PLoS ONE, 2018, 13, e0199385.	2.5	24
26	Editorial: Parasite Infections: From Experimental Models to Natural Systems. Frontiers in Cellular and Infection Microbiology, 2018, 8, 12.	3.9	2
27	The Intestinal Roundworm Ascaris suum Releases Antimicrobial Factors Which Interfere With Bacterial Growth and Biofilm Formation. Frontiers in Cellular and Infection Microbiology, 2018, 8, 271.	3.9	41
28	Silent Witness: Dual-Species Transcriptomics Reveals Epithelial Immunological Quiescence to Helminth Larval Encounter and Fostered Larval Development. Frontiers in Immunology, 2018, 9, 1868.	4.8	13
29	Next-Generation Parasitologists: Structured Training Programs Meet Educational Challenges. Trends in Parasitology, 2017, 33, 423-425.	3.3	5
30	Intestinal helminth infection induces highly functional resident memory CD4 ⁺ T cells in mice. European Journal of Immunology, 2017, 47, 353-363.	2.9	40
31	Pathogen-Reactive T Helper Cell Analysis in the Pig. Frontiers in Immunology, 2017, 8, 565.	4.8	21
32	Differential immunomodulation in human monocytes versus macrophages by filarial cystatin. PLoS ONE, 2017, 12, e0188138.	2.5	9
33	Eosinophils in Homeostasis and Their Contrasting Roles during Inflammation and Helminth Infections. Critical Reviews in Immunology, 2016, 36, 193-238.	0.5	23
34	Susceptibility to Ticks and Lyme Disease Spirochetes Is Not Affected in Mice Coinfected with Nematodes. Infection and Immunity, 2016, 84, 1274-1286.	2.2	11
35	A Helminth Protease Inhibitor Modulates the Lipopolysaccharide-Induced Proinflammatory Phenotype of Microglia in vitro. NeuroImmunoModulation, 2016, 23, 109-121.	1.8	11
36	The Helminth-Derived Immunomodulator AvCystatin Reduces Virus Enhanced Inflammation by Induction of Regulatory IL-10+ T Cells. PLoS ONE, 2016, 11, e0161885.	2.5	17

#	Article	IF	CITATIONS
37	Diplomatic Assistance: Can Helminth-Modulated Macrophages Act as Treatment for Inflammatory Disease?. PLoS Pathogens, 2016, 12, e1005480.	4.7	35
38	A Novel Regulatory Macrophage Induced by a Helminth Molecule Instructs IL-10 in CD4+ T Cells and Protects against Mucosal Inflammation. Journal of Immunology, 2015, 194, 1555-1564.	0.8	79
39	Brugia malayi Microfilariae Induce a Regulatory Monocyte/Macrophage Phenotype That Suppresses Innate and Adaptive Immune Responses. PLoS Neglected Tropical Diseases, 2014, 8, e3206.	3.0	32
40	Frequencies of regulatory T cells in the peripheral blood of dogs with primary immune-mediated thrombocytopenia and chronic enteropathy: A pilot study. Veterinary Journal, 2014, 202, 630-633.	1.7	10
41	Basophil-mediated protection against gastrointestinal helminths requires IgE-induced cytokine secretion. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5169-E5177.	7.1	85
42	A Transgenic Probiotic Secreting a Parasite Immunomodulator for Site-Directed Treatment of Gut Inflammation. Molecular Therapy, 2014, 22, 1730-1740.	8.2	63
43	A nematode immunomodulator suppresses grass pollen-specific allergic responses by controlling excessive Th2 inflammation. International Journal for Parasitology, 2013, 43, 201-210.	3.1	56
44	A Helminth Immunomodulator Exploits Host Signaling Events to Regulate Cytokine Production in Macrophages. PLoS Pathogens, 2011, 7, e1001248.	4.7	105
45	A Helminth Immunomodulator Reduces Allergic and Inflammatory Responses by Induction of IL-10-Producing Macrophages. Journal of Immunology, 2008, 180, 4265-4272.	0.8	224
46	Studies on Acanthocheilonema viteae cystatin: genomic organization, promoter studies and expression in Caenorhabditis elegans. Parasites and Vectors, 2005, 4, 9.	1.3	2
47	Cystatins of filarial nematodes up-regulate the nitric oxide production of interferon-gamma-activated murine macrophages. Parasite Immunology, 2002, 24, 253-262.	1.5	49
48	Modulation of Human T Cell Responses and Macrophage Functions by Onchocystatin, a Secreted Protein of the Filarial Nematode <i>Onchocerca volvulus</i> . Journal of Immunology, 2001, 167, 3207-3215.	0.8	145
49	A 41-kDa antigen of the rodent filaria Acanthocheilonema viteae with homologies to tropomyosin induces host-protective immune responses. Parasitology Research, 1997, 83, 390-393.	1.6	28
50	A filarial cysteine protease inhibitor down-regulates T cell proliferation and enhances interleukin-10 production. European Journal of Immunology, 1997, 27, 2253-2260.	2.9	137