
Isabel Molina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8832850/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical and Molecular Characterization of Wound-Induced Suberization in Poplar (Populus alba × P.) Tj ETQq1	1.0.7843 3.5	14 rgBT /0
2	Integrating GWAS and TWAS to elucidate the genetic architecture of maize leaf cuticular conductance. Plant Physiology, 2022, 189, 2144-2158.	4.8	9
3	The FUSED LEAVES1â€ <i>ADHERENT1</i> regulatory module is required for maize cuticle development and organ separation. New Phytologist, 2021, 229, 388-402.	7.3	17
4	A seed coat-specific β-ketoacyl-CoA synthase, KCS12, is critical for preserving seed physical dormancy. Plant Physiology, 2021, 186, 1606-1615.	4.8	20
5	Extracellular lipids of Camelina sativa: Characterization of cutin and suberin reveals typical polyester monomers and unusual dicarboxylic fatty acids. Phytochemistry, 2021, 184, 112665.	2.9	8
6	ESCRT components ISTL1 andLIP5 are required for tapetal function and pollen viability. Plant Cell, 2021, 33, 2850-2868.	6.6	19
7	Apoplastic lipid barriers regulated by conserved homeobox transcription factors extend seed longevity in multiple plant species. New Phytologist, 2021, 231, 679-694.	7.3	16
8	Seed coat suberin forms a barrier against chromium (Cr3+) during early seed germination in Arabidopsis thaliana. Environmental and Experimental Botany, 2021, 191, 104632.	4.2	5
9	Root Suberin Plays Important Roles in Reducing Water Loss and Sodium Uptake in Arabidopsis thaliana. Metabolites, 2021, 11, 735.	2.9	16
10	<i>PRX2</i> and <i>PRX25</i> , peroxidases regulated by COG1, are involved in seed longevity in Arabidopsis. Plant, Cell and Environment, 2020, 43, 315-326.	5.7	33
11	Constructing functional cuticles: analysis of relationships between cuticle lipid composition, ultrastructure and water barrier function in developing adult maize leaves. Annals of Botany, 2020, 125, 79-91.	2.9	58
12	A maize LIPID TRANSFER PROTEIN may bridge the gap between PHYTOCHROME-mediated light signaling and cuticle biosynthesis. Plant Signaling and Behavior, 2020, 15, 1790824.	2.4	6
13	Structureâ€function analysis of the maize bulliform cell cuticle and its potential role in dehydration and leaf rolling. Plant Direct, 2020, 4, e00282.	1.9	24
14	Transcriptomic network analyses shed light on the regulation of cuticle development in maize leaves. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12464-12471.	7.1	19
15	Genome-Wide Association Study for Maize Leaf Cuticular Conductance Identifies Candidate Genes Involved in the Regulation of Cuticle Development. G3: Genes, Genomes, Genetics, 2020, 10, 1671-1683.	1.8	13
16	Functional Overlap of Long-Chain Acyl-CoA Synthetases in Arabidopsis. Plant and Cell Physiology, 2019, 60, 1041-1054.	3.1	44
17	Reconstructing the suberin pathway in poplar by chemical and transcriptomic analysis of bark tissues. Tree Physiology, 2018, 38, 340-361.	3.1	51
18	A class II KNOX gene, <i>KNOX4</i> , controls seed physical dormancy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6997-7002.	7.1	55

ISABEL MOLINA

#	Article	IF	CITATIONS
19	Isolation and Compositional Analysis of Plant Cuticle Lipid Polyester Monomers. Journal of Visualized Experiments, 2015, , .	0.3	14
20	Role of HXXXD-motif/BAHD acyltransferases in the biosynthesis of extracellular lipids. Plant Cell Reports, 2015, 34, 587-601.	5.6	72
21	GC-MS-Based Analysis of Chloroform Extracted Suberin-Associated Root Waxes from Arabidopsis and Other Plant Species. Bio-protocol, 2015, 5, .	0.4	Ο
22	ABCG Transporters Are Required for Suberin and Pollen Wall Extracellular Barriers in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 26, 3569-3588.	6.6	241
23	At <scp>MYB</scp> 41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types. Plant Journal, 2014, 80, 216-229.	5.7	172
24	Extracellular lipids of Camelina sativa: Characterization of chloroform-extractable waxes from aerial and subterranean surfaces. Phytochemistry, 2014, 106, 188-196.	2.9	49
25	Using Effective Stereoscopic Molecular Model Visualizations in Undergraduate Classrooms. International Journal for Cross-Disciplinary Subjects in Education, 2014, 5, 1593-1598.	0.1	4
26	Acyl-Lipid Metabolism. The Arabidopsis Book, 2013, 11, e0161.	0.5	974
27	Identification of an Arabidopsis Fatty Alcohol:Caffeoyl-Coenzyme A Acyltransferase Required for the Synthesis of Alkyl Hydroxycinnamates in Root Waxes1 Â Â. Plant Physiology, 2012, 160, 237-248.	4.8	80
28	Organ fusion and defective cuticle function in a lacs1 lacs2 double mutant of Arabidopsis. Planta, 2010, 231, 1089-1100.	3.2	126
29	Acyl-Lipid Metabolism. The Arabidopsis Book, 2010, 8, e0133.	0.5	287
30	Identification of an Arabidopsis Feruloyl-Coenzyme A Transferase Required for Suberin Synthesis Â. Plant Physiology, 2009, 151, 1317-1328.	4.8	193
31	Transformation of a dwarf <i>Arabidopsis</i> mutant illustrates gibberellin hormone physiology and the function of a Green Revolution gene. Biochemistry and Molecular Biology Education, 2009, 37, 170-177.	1.2	1
32	Deposition and localization of lipid polyester in developing seeds of <i>Brassica napus</i> and <i>Arabidopsis thaliana</i> . Plant Journal, 2008, 53, 437-449.	5.7	114
33	Mature Amaranthus hypochondriacus seeds contain non-processed 11S precursors. Phytochemistry, 2008, 69, 58-65.	2.9	9
34	Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18339-18344.	7.1	348
35	Two short sequences from amaranth 11S globulin are sufficient to target green fluorescent protein and beta-glucuronidase to vacuoles in Arabidopsis cells. Plant Physiology and Biochemistry, 2007, 45, 400-409.	5.8	10
36	The lipid polyester composition of Arabidopsis thaliana and Brassica napus seeds. Phytochemistry, 2006, 67, 2597-2610.	2.9	132

ISABEL MOLINA

#	Article	IF	CITATIONS
37	Sunflower storage proteins are transported in dense vesicles that contain proteins homologous to the pumpkin vacuolar sorting receptor PV 72. Electronic Journal of Biotechnology, 2006, 9, 0-0.	2.2	2
38	Effect of pH and Ionic Strength Modifications on Thermal Denaturation of the 11S Globulin of Sunflower (Helianthus annuus). Journal of Agricultural and Food Chemistry, 2004, 52, 6023-6029.	5.2	53
39	The effects of divalent cations in the presence of phosphate, citrate and chloride on the aggregation of soy protein isolate. Food Research International, 1999, 32, 135-143.	6.2	36