
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8832690/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	GaN:ZnO Solid Solution as a Photocatalyst for Visible-Light-Driven Overall Water Splitting. Journal of the American Chemical Society, 2005, 127, 8286-8287.	13.7	1,317
2	Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nature Chemistry, 2012, 4, 934-940.	13.6	1,085
3	Hydrolysis of Cellulose by Amorphous Carbon Bearing SO ₃ H, COOH, and OH Groups. Journal of the American Chemical Society, 2008, 130, 12787-12793.	13.7	941
4	Conduction and Valence Band Positions of Ta2O5, TaON, and Ta3N5by UPS and Electrochemical Methods. Journal of Physical Chemistry B, 2003, 107, 1798-1803.	2.6	917
5	Oxysulfide Sm2Ti2S2O5as a Stable Photocatalyst for Water Oxidation and Reduction under Visible Light Irradiation (λ ≤50 nm). Journal of the American Chemical Society, 2002, 124, 13547-13553.	13.7	890
6	Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chemical Communications, 1998, , 357-358.	4.1	747
7	Biodiesel made with sugar catalyst. Nature, 2005, 438, 178-178.	27.8	735
8	An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ â‰₱Tj ETQq0	0.0.rgBT / 4.1	Oygrjock 10

9	Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nature Communications, 2015, 6, 6731.	12.8	529
10	A Carbon Material as a Strong Protonic Acid. Angewandte Chemie - International Edition, 2004, 43, 2955-2958.	13.8	519
11	Acid-Catalyzed Reactions on Flexible Polycyclic Aromatic Carbon in Amorphous Carbon. Chemistry of Materials, 2006, 18, 3039-3045.	6.7	509
12	Nb ₂ O ₅ ·nH ₂ O as a Heterogeneous Catalyst with Water-Tolerant Lewis Acid Sites. Journal of the American Chemical Society, 2011, 133, 4224-4227.	13.7	480
13	Photoreactions on LaTiO2N under Visible Light Irradiation. Journal of Physical Chemistry A, 2002, 106, 6750-6753.	2.5	443
14	Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method. Chemical Communications, 2003, , 2142.	4.1	443
15	Structural and Kinetic Characterization of Lithium Intercalation into Carbon Anodes for Secondary Lithium Batteries. Journal of the Electrochemical Society, 1995, 142, 371-379.	2.9	410
16	RuO2-Loaded β-Ge3N4as a Non-Oxide Photocatalyst for Overall Water Splitting. Journal of the American Chemical Society, 2005, 127, 4150-4151.	13.7	388
17	Overall Water Splitting on (Ga1-xZnx)(N1-xOx) Solid Solution Photocatalyst:Â Relationship between Physical Properties and Photocatalytic Activity. Journal of Physical Chemistry B, 2005, 109, 20504-20510.	2.6	384
18	Ta3N5as a Novel Visible Light-Driven Photocatalyst (λ<600 nm). Chemistry Letters, 2002, 31, 736-737.	1.3	377

#	Article	IF	CITATIONS
19	Amorphous Carbon with SO ₃ H Groups as a Solid BrÃ,nsted Acid Catalyst. ACS Catalysis, 2012, 2, 1296-1304.	11.2	367
20	Photocatalytic Decomposition of Water on Spontaneously Hydrated Layered Perovskites. Chemistry of Materials, 1997, 9, 1063-1064.	6.7	351
21	TaON and Ta3N5 as new visible light driven photocatalysts. Catalysis Today, 2003, 78, 555-560.	4.4	339
22	Photo- and Mechano-Catalytic Overall Water Splitting Reactions to Form Hydrogen and Oxygen on Heterogeneous Catalysts. Bulletin of the Chemical Society of Japan, 2000, 73, 1307-1331.	3.2	316
23	Effect of MnO ₂ Crystal Structure on Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Journal of the American Chemical Society, 2019, 141, 890-900.	13.7	299
24	LaTiO2N as a Visible-Light (â‰ ë 00 nm)-Driven Photocatalyst (2). Journal of Physical Chemistry B, 2003, 107, 791-797.	2.6	288
25	Adsorption-Enhanced Hydrolysis of β-1,4-Glucan on Graphene-Based Amorphous Carbon Bearing SO ₃ H, COOH, and OH Groups. Langmuir, 2009, 25, 5068-5075.	3.5	274
26	Photocatalytic Water Oxidation in a Buffered Tris(2,2â€ [~] -bipyridyl)ruthenium Complex-Colloidal IrO2 System. Journal of Physical Chemistry A, 2000, 104, 5275-5280.	2.5	273
27	Esterification of higher fatty acids by a novel strong solid acid. Catalysis Today, 2006, 116, 157-161.	4.4	266
28	Zinc Germanium Oxynitride as a Photocatalyst for Overall Water Splitting under Visible Light. Journal of Physical Chemistry C, 2007, 111, 1042-1048.	3.1	262
29	Biomass conversion by a solid acid catalyst. Energy and Environmental Science, 2010, 3, 601.	30.8	249
30	Exfoliated Nanosheets as a New Strong Solid Acid Catalyst. Journal of the American Chemical Society, 2003, 125, 5479-5485.	13.7	247
31	Electronic Effect of Ruthenium Nanoparticles on Efficient Reductive Amination of Carbonyl Compounds. Journal of the American Chemical Society, 2017, 139, 11493-11499.	13.7	244
32	Heterogeneous photocatalytic cleavage of water. Journal of Materials Chemistry, 2010, 20, 627-641.	6.7	234
33	Recent progress of photocatalysts for overall water splitting. Catalysis Today, 1998, 44, 17-26.	4.4	230
34	A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 106, 45-49.	3.9	204
35	Essential role of hydride ion in ruthenium-based ammonia synthesis catalysts. Chemical Science, 2016, 7, 4036-4043.	7.4	195
36	Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Ionics, 2004, 172, 591-595.	2.7	194

#	Article	IF	CITATIONS
37	Ru-Loaded C12A7:e [–] Electride as a Catalyst for Ammonia Synthesis. ACS Catalysis, 2017, 7, 2313-2324.	11.2	173
38	Oxysulfides Ln2Ti2S2O5as Stable Photocatalysts for Water Oxidation and Reduction under Visible-Light Irradiation. Journal of Physical Chemistry B, 2004, 108, 2637-2642.	2.6	169
39	Nanosheets as highly active solid acid catalysts for green chemical syntheses. Energy and Environmental Science, 2010, 3, 82-93.	30.8	167
40	Unusual enhancement of H2 evolution by Ru on TaON photocatalyst under visible light irradiation. Chemical Communications, 2003, , 3000.	4.1	166
41	Preparation of K2La2Ti3O10by Polymerized Complex Method and Photocatalytic Decomposition of Water. Chemistry of Materials, 1998, 10, 72-77.	6.7	161
42	Protonated Titanate Nanotubes as Solid Acid Catalyst. Journal of the American Chemical Society, 2010, 132, 6622-6623.	13.7	159
43	Water reduction and oxidation on Pt–Ru/Y2Ta2O5N2catalyst under visible light irradiation. Chemical Communications, 2004, , 2192-2193.	4.1	157
44	Hydrolysis of Cellulose by a Solid Acid Catalyst under Optimal Reaction Conditions. Journal of Physical Chemistry C, 2009, 113, 3181-3188.	3.1	156
45	Protonated Titanate Nanotubes with Lewis and BrĄ̃,nsted Acidity: Relationship between Nanotube Structure and Catalytic Activity. Chemistry of Materials, 2013, 25, 385-393.	6.7	153
46	A Stable and Highly Active Hybrid Mesoporous Solid Acid Catalyst. Advanced Materials, 2005, 17, 1839-1842.	21.0	151
47	Ammonia decomposition by ruthenium nanoparticles loaded on inorganic electride C12A7:eâ^'. Chemical Science, 2013, 4, 3124.	7.4	148
48	Electrochemical Behavior of Thin Ta3N5Semiconductor Film. Journal of Physical Chemistry B, 2004, 108, 11049-11053.	2.6	146
49	Selfâ€organized Ruthenium–Barium Core–Shell Nanoparticles on a Mesoporous Calcium Amide Matrix for Efficient Lowâ€Temperature Ammonia Synthesis. Angewandte Chemie - International Edition, 2018, 57, 2648-2652.	13.8	144
50	Mechano-catalytic overall water splitting. Chemical Communications, 1998, , 2185-2186.	4.1	139
51	Sulfur-substituted and zinc-doped In(OH)3: A new class of catalyst for photocatalytic H2 production from water under visible light illumination. Journal of Catalysis, 2006, 237, 322-329.	6.2	138
52	Amorphous Carbon Bearing Sulfonic Acid Groups in Mesoporous Silica as a Selective Catalyst. Chemistry of Materials, 2009, 21, 186-193.	6.7	136
53	Heterogeneously atalyzed Aerobic Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid with MnO ₂ . ChemSusChem, 2017, 10, 654-658.	6.8	134
54	TiNxOyFzas a Stable Photocatalyst for Water Oxidation in Visible Light (<570 nm). Chemistry Letters, 2003, 32, 196-197.	1.3	133

#	Article	IF	CITATIONS
55	Synthesis and acid catalysis of cellulose-derived carbon-based solid acid. Solid State Sciences, 2010, 12, 1029-1034.	3.2	133
56	Efficient and Stable Ammonia Synthesis by Self-Organized Flat Ru Nanoparticles on Calcium Amide. ACS Catalysis, 2016, 6, 7577-7584.	11.2	129
57	Preparation of a Sulfonated Porous Carbon Catalyst with High Specific Surface Area. Catalysis Letters, 2009, 131, 242-249.	2.6	127
58	Biodiesel Production by Amorphous Carbon Bearing SO3H, COOH and Phenolic OH Groups, a Solid BrÃ,nsted Acid Catalyst. Topics in Catalysis, 2010, 53, 805-810.	2.8	127
59	Tantalum Oxynitride for a Novel Cathode of PEFC. Electrochemical and Solid-State Letters, 2005, 8, A201.	2.2	126
60	Synergistic Catalysis by Lewis Acid and Base Sites on ZrO ₂ for Meerwein–Ponndorf–Verley Reduction. Journal of Physical Chemistry C, 2015, 119, 26540-26546.	3.1	122
61	Preparation of Porous Niobium Oxides by Soft-Chemical Process and Their Photocatalytic Activity. Chemistry of Materials, 1997, 9, 2179-2184.	6.7	121
62	Ta3N5and TaON Thin Films on Ta Foil:Â Surface Composition and Stability. Journal of Physical Chemistry B, 2003, 107, 13441-13445.	2.6	121
63	Photocatalytic Decomposition of Acetaldehyde under Visible Light Irradiation over La3+and N Co-doped TiO2. Chemistry Letters, 2003, 32, 1156-1157.	1.3	118
64	Exfoliated HNb3O8Nanosheets as a Strong Protonic Solid Acid. Chemistry of Materials, 2005, 17, 2487-2489.	6.7	117
65	Environmentally Benign Production of Biodiesel Using Heterogeneous Catalysts. ChemSusChem, 2009, 2, 129-135.	6.8	116
66	Modification of (Zn1+xGe)(N2Ox) Solid Solution as a Visible Light Driven Photocatalyst for Overall Water Splitting. Chemistry of Materials, 2007, 19, 2120-2127.	6.7	115
67	Rechargeable Lithiumâ€lon Cells Using Graphitized Mesophaseâ€Pitchâ€Based Carbon Fiber Anodes. Journal of the Electrochemical Society, 1995, 142, 2564-2571.	2.9	114
68	Structure and Catalysis of Celluloseâ€Đerived Amorphous Carbon Bearing SO ₃ H Groups. ChemSusChem, 2011, 4, 778-784.	6.8	111
69	Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals. Science and Technology of Advanced Materials, 2015, 16, 034903.	6.1	104
70	Photocatalytic reduction of water by TaON under visible light irradiation. Catalysis Today, 2004, 90, 313-317.	4.4	103
71	Solid solution for catalytic ammonia synthesis from nitrogen and hydrogen gases at 50 °C. Nature Communications, 2020, 11, 2001.	12.8	103
72	Titanium Niobate and Titanium Tantalate Nanosheets as Strong Solid Acid Catalysts. Journal of Physical Chemistry B, 2004, 108, 11549-11555.	2.6	99

#	Article	IF	CITATIONS
73	Titania as an Early Transition Metal Oxide with a High Density of Lewis Acid Sites Workable in Water. Journal of Physical Chemistry C, 2013, 117, 16028-16033.	3.1	95
74	Mechano-catalysis—a novel method for overall water splitting. Physical Chemistry Chemical Physics, 1999, 1, 4485-4491.	2.8	94
75	Effect of Chromium Addition for Photocatalytic Overall Water Splitting on Ni–K2La2Ti3O10. Journal of Catalysis, 2000, 196, 362-365.	6.2	92
76	Novel Synthesis and Photocatalytic Activity of Oxysulfide Sm2Ti2S2O5. Chemistry of Materials, 2003, 15, 4442-4446.	6.7	92
77	Porous Single-Crystalline TaON and Ta3N5 Particles. Chemistry of Materials, 2004, 16, 1603-1605.	6.7	92
78	A high performance catalyst of shape-specific ruthenium nanoparticles for production of primary amines by reductive amination of carbonyl compounds. Chemical Science, 2018, 9, 5949-5956.	7.4	92
79	Effect of the particle size for photocatalytic decomposition of water on Ni-loaded K4Nb6O17. Microporous Materials, 1997, 9, 253-258.	1.6	91
80	Photocatalytic Oxidation of Water by Silica-Supported Tris(4,4â€~-dialkyl-2,2â€~-bipyridyl)ruthenium Polymeric Sensitizers and Colloidal Iridium Oxide. Chemistry of Materials, 2001, 13, 4668-4675.	6.7	91
81	Crystallization of an Ordered Mesoporous Nb–Ta Oxide. Angewandte Chemie - International Edition, 2003, 42, 2382-2385.	13.8	90
82	Highly Dispersed Ru on Electride [Ca ₂₄ Al ₂₈ O ₆₄] ⁴⁺ (e [–]) ₄ as a Catalyst for Ammonia Synthesis. ACS Catalysis, 2014, 4, 674-680.	11.2	90
83	Surface State Analysis of Photobrightening in CdSe Nanocrystal Thin Films. Journal of Physical Chemistry B, 2003, 107, 12566-12568.	2.6	86
84	Visible-light-driven photocatalytic behavior of tantalum-oxynitride and nitride. Research on Chemical Intermediates, 2007, 33, 13-25.	2.7	86
85	Fabrication of SrTiO3 exposing characteristic facets using molten salt flux and improvement of photocatalytic activity for water splitting. Catalysis Science and Technology, 2013, 3, 1733.	4.1	86
86	Selective glucose transformation by titania as a heterogeneous Lewis acid catalyst. Journal of Molecular Catalysis A, 2014, 388-389, 100-105.	4.8	83
87	Structure and Acid Catalysis of Mesoporous Nb ₂ O ₅ · <i>n</i> H ₂ O. Chemistry of Materials, 2010, 22, 3332-3339.	6.7	82
88	Formation of 5-(Hydroxymethyl)furfural by Stepwise Dehydration over TiO ₂ with Water-Tolerant Lewis Acid Sites. Journal of Physical Chemistry C, 2015, 119, 17117-17125.	3.1	82
89	SO3H-bearing mesoporous carbon with highly selective catalysis. Microporous and Mesoporous Materials, 2011, 143, 443-450.	4.4	79
90	Metal ion and N co-doped TiO2 as a visible-light photocatalyst. Journal of Materials Research, 2004, 19, 2100-2108.	2.6	77

#	Article	IF	CITATIONS
91	Mechanism Switching of Ammonia Synthesis Over Ru-Loaded Electride Catalyst at Metal–Insulator Transition. Journal of the American Chemical Society, 2015, 137, 14517-14524.	13.7	77
92	(Oxy)nitrides as New Photocatalysts for Water Splitting under Visible Light Irradiation. Electrochemistry, 2002, 70, 463-465.	1.4	74
93	Wavelength-Programmable Organic Distributed-Feedback Laser Based on a Photoassisted Polymer-Migration System. Advanced Materials, 2005, 17, 1630-1633.	21.0	74
94	New aspects of heterogeneous photocatalysts for water decomposition. Korean Journal of Chemical Engineering, 2001, 18, 862-866.	2.7	71
95	A bifunctional cerium phosphate catalyst for chemoselective acetalization. Chemical Science, 2017, 8, 3146-3153.	7.4	68
96	Direct Activation of Cobalt Catalyst by 12CaO·7Al ₂ O ₃ Electride for Ammonia Synthesis. ACS Catalysis, 2019, 9, 1670-1679.	11.2	68
97	Lanthanum–Indium Oxysulfide as a Visible Light Driven Photocatalyst for Water Splitting. Chemistry Letters, 2007, 36, 854-855.	1.3	66
98	Control of valence band potential and photocatalytic properties of NaxLa1â^'xTaO1+2xN2â^'2x oxynitride solid solutions. Journal of Materials Chemistry A, 2013, 1, 3667.	10.3	65
99	Synthesis, Mesostructure, and Photocatalysis of a Highly Ordered and Thermally Stable Mesoporous Mg and Ta Mixed Oxide. Chemistry of Materials, 2004, 16, 4304-4310.	6.7	62
100	Ba1.0Co0.7Fe0.2Nb0.1O3â^îÎƊense Ceramic as an Oxygen Permeable Membrane for Partial Oxidation of Methane to Synthesis Gas. Chemistry Letters, 2006, 35, 1326-1327.	1.3	62
101	Photocatalytic water oxidation by Nafion-stabilized iridium oxide colloids. Chemical Communications, 2000, , 1903-1904.	4.1	61
102	Preparation of Thin Films of a Layered Titanate by the Exfoliation of CsxTi(2-x/4)x/4O4. Chemistry of Materials, 1998, 10, 329-333.	6.7	60
103	sp ³ â€Linked Amorphous Carbon with Sulfonic Acid Groups as a Heterogeneous Acid Catalyst. ChemSusChem, 2012, 5, 1841-1846.	6.8	60
104	Enhanced Catalytic Ammonia Synthesis with Transformed BaO. ACS Catalysis, 2018, 8, 10977-10984.	11.2	59
105	Preparation of porous niobium oxide by the exfoliation of K ₄ Nb ₆ O ₁₇ and its photocatalytic activity. Journal of Materials Research, 1998, 13, 861-865.	2.6	58
106	Preparation of a high active photocatalyst, K ₂ La ₂ Ti ₃ O ₁₀ , by polymerized complex method and its photocatalytic activity of water splitting. Journal of Materials Research, 1998, 13, 852-855.	2.6	55
107	Low-Temperature Reductive Amination of Carbonyl Compounds over Ru Deposited on Nb ₂ O ₅ · <i>n</i> H ₂ O. ACS Sustainable Chemistry and Engineering, 2019, 7, 4692-4698.	6.7	55
108	Formation and desorption of aluminum hydride from hydrogen adsorbed aluminum surfaces. Surface Science, 1991, 242, 459-463.	1.9	54

#	Article	IF	CITATIONS
109	Preparation and crystallization characteristics of mesoporous TiO2 and mixed oxides. Journal of Materials Chemistry, 2005, 15, 2035.	6.7	53
110	Preparation and Characterization of Sodium Tantalate Thin Films by Hydrothermalâ^'Electrochemical Synthesis. Chemistry of Materials, 2005, 17, 2422-2426.	6.7	53
111	Synthesis of NiO-loaded KTiNbO5 photocatalysts by a novel polymerizable complex method. Journal of Alloys and Compounds, 1999, 285, 77-81.	5.5	52
112	Preparation of Ion-Exchangeable Thin Films of Layered Niobate K4Nb6O17. Chemistry of Materials, 1998, 10, 1647-1651.	6.7	51
113	Structural and Electrochemical Properties of Lithiated Polymerized Aromatics. Anodes for Lithium-Ion Cells. The Journal of Physical Chemistry, 1995, 99, 16338-16343.	2.9	50
114	Hydrothermal Synthesis of Fine NaTaO3Powder as a Highly Efficient Photocatalyst for Overall Water Splitting. Bulletin of the Chemical Society of Japan, 2007, 80, 423-428.	3.2	50
115	Heterogeneously Catalyzed Aerobic Oxidation of Sulfides with a BaRuO ₃ Nanoperovskite. ACS Applied Materials & Interfaces, 2018, 10, 23792-23801.	8.0	50
116	A Study of Mechano-Catalysts for Overall Water Splitting. Journal of Physical Chemistry B, 2000, 104, 780-785.	2.6	49
117	A Combined Catalyst of Pt Nanoparticles and TiO ₂ with Waterâ€Tolerant Lewis Acid Sites for Oneâ€Pot Conversion of Glycerol to Lactic Acid. ChemCatChem, 2016, 8, 1094-1099.	3.7	49
118	Dioxygen Activation by a Hexagonal SrMnO ₃ Perovskite Catalyst for Aerobic Liquidâ€Phase Oxidation. ChemCatChem, 2016, 8, 3247-3253.	3.7	49
119	Effect of 10 MPa Ammonia Treatment on the Activity of Visible Light Responsive Ta3N5Photocatalyst. Chemistry Letters, 2006, 35, 352-353.	1.3	48
120	Oxygen-permeable Membranes of Ba1.0Co0.7Fe0.2Nb0.1O3â~'δfor Preparation of Synthesis Gas from Methane by Partial Oxidation. Chemistry Letters, 2006, 35, 968-969.	1.3	48
121	Development of highly active SO3H-modified hybrid mesoporous catalyst. Catalysis Today, 2006, 116, 151-156.	4.4	47
122	Folic acid-conjugated magnetic mesoporous silica nanoparticles loaded with quercetin: a theranostic approach for cancer management. RSC Advances, 2020, 10, 23148-23164.	3.6	47
123	Effect of High-Pressure Ammonia Treatment on the Activity of Ge3N4Photocatalyst for Overall Water Splitting. Journal of Physical Chemistry B, 2006, 110, 17563-17569.	2.6	46
124	Desorption of aluminum hydride from hydrogen adsorbed aluminum(111) surface. The Journal of Physical Chemistry, 1991, 95, 6-7.	2.9	45
125	Mechano-catalytic overall water splitting (II) nafion-deposited Cu2O. Applied Catalysis A: General, 2000, 190, 35-42.	4.3	45
126	Lewis Acid Catalysis of TiO ₄ Tetrahedra on Mesoporous Silica in Water. ACS Catalysis, 2014, 4, 1198-1204.	11.2	45

#	Article	IF	CITATIONS
127	Template-Free Synthesis of Mesoporous β-MnO ₂ Nanoparticles: Structure, Formation Mechanism, and Catalytic Properties. ACS Applied Materials & Interfaces, 2020, 12, 36004-36013.	8.0	45
128	Environmentally Benign Production of Chemicals and Energy Using a Carbonâ€Based Strong Solid Acid. Journal of the American Ceramic Society, 2007, 90, 3725-3734.	3.8	44
129	Amino Acid-Aided Synthesis of a Hexagonal SrMnO ₃ Nanoperovskite Catalyst for Aerobic Oxidation. ACS Omega, 2017, 2, 1608-1616.	3.5	44
130	Ag nanoparticle-decorated, ordered mesoporous silica as an efficient electrocatalyst for alkaline water oxidation reaction. Dalton Transactions, 2019, 48, 2220-2227.	3.3	40
131	Control of nitrogen activation ability by Co-Mo bimetallic nanoparticle catalysts prepared via sodium naphthalenide-reduction. Journal of Catalysis, 2018, 364, 31-39.	6.2	38
132	Mechano-catalytic overall water splitting on some mixed oxides. Catalysis Today, 2000, 63, 175-181.	4.4	37
133	Ammonia synthesis over Co–Mo alloy nanoparticle catalyst prepared via sodium naphthalenide-driven reduction. Chemical Communications, 2016, 52, 14369-14372.	4.1	37
134	Synthesis of Highly Ordered Hybrid Mesoporous Material Containing Etenylene (–CH=CH–) within the Silicate Framework. Chemistry Letters, 2003, 32, 950-951.	1.3	36
135	Starch saccharification by carbon-based solid acid catalyst. Solid State Sciences, 2010, 12, 1018-1023.	3.2	35
136	Mechano-catalytic overall water-splitting into hydrogen and oxygen on some metal oxides. Applied Energy, 2000, 67, 159-179.	10.1	34
137	Effect of preparation conditions on the structural and acid catalytic properties of protonated titanate nanotubes. Journal of Materials Chemistry A, 2013, 1, 12768.	10.3	34
138	Large Oblate Hemispheroidal Ruthenium Particles Supported on Calcium Amide as Efficient Catalysts for Ammonia Decomposition. Chemistry - A European Journal, 2018, 24, 7976-7984.	3.3	34
139	Slow Reactant–Water Exchange and High Catalytic Performance of Waterâ€Tolerant Lewis Acids. Chemistry - A European Journal, 2014, 20, 8068-8075.	3.3	33
140	Anchoring Bond between Ru and N Atoms of Ru/Ca ₂ NH Catalyst: Crucial for the High Ammonia Synthesis Activity. Journal of Physical Chemistry C, 2017, 121, 20900-20904.	3.1	33
141	Effects of ruthenium hydride species on primary amine synthesis by direct amination of alcohols over a heterogeneous Ru catalyst. Chemical Science, 2020, 11, 9884-9890.	7.4	31
142	A zeolitic vanadotungstate family with structural diversity and ultrahigh porosity for catalysis. Nature Communications, 2018, 9, 3789.	12.8	30
143	Liquid-phase oxidation of alkanes with molecular oxygen catalyzed by high valent iron-based perovskite. Chemical Communications, 2018, 54, 6772-6775.	4.1	29
144	Electron Donation Enhanced CO Oxidation over Ru-Loaded 12CaO·7Al ₂ O ₃ Electride Catalyst. Journal of Physical Chemistry C, 2015, 119, 11725-11731.	3.1	28

#	Article	IF	CITATIONS
145	Synthesis of Highly Ordered Mesoporous Tantalum Oxide. Chemistry Letters, 2005, 34, 394-395.	1.3	27
146	Acidic Ultrafine Tungsten Oxide Molecular Wires for Cellulosic Biomass Conversion. Angewandte Chemie - International Edition, 2016, 55, 10234-10238.	13.8	27
147	Mechano-catalytic overall water splitting on some oxides (II). Applied Catalysis A: General, 2000, 200, 255-262.	4.3	25
148	Synthesis of (H3O)TiNbO5·0.26H2O via hydronium (H3O+) ion-exchange reaction and its photocatalytic activity for H2 evolution from aqueous methanol solution. Physical Chemistry Chemical Physics, 2000, 2, 4461-4464.	2.8	25
149	Triblock copolymer-assisted synthesis of a hybrid mesoporous ethenylene–silica with 2D hexagonal structure and large pores. Journal of Materials Chemistry, 2005, 15, 2362.	6.7	25
150	Zinc and Titanium Spinel Oxynitride (ZnxTiOyNz) as a d0–d10Complex Photocatalyst with Visible Light Activity. Chemistry Letters, 2007, 36, 558-559.	1.3	25
151	Synthesis and acid catalysis of zeolite-templated microporous carbons with SO3H groups. Physical Chemistry Chemical Physics, 2013, 15, 9343.	2.8	25
152	Synthesis of niobium-doped titanate nanotubes as solid acid catalysts. Catalysis Science and Technology, 2016, 6, 4832-4839.	4.1	25
153	Ambient-temperature oxidative coupling of methane in an electric field by a cerium phosphate nanorod catalyst. Chemical Communications, 2019, 55, 4019-4022.	4.1	25
154	Supermicroporous Niobium Oxide as an Acid Catalyst. Catalysis Letters, 2004, 98, 181-186.	2.6	24
155	Efficient Conversion of Pyruvic Aldehyde into Lactic Acid by Lewis Acid Catalyst in Water. Chemistry Letters, 2013, 42, 873-875.	1.3	24
156	Efficient Mukaiyama aldol reaction in water with TiO ₄ tetrahedra on a hydrophobic mesoporous silica surface. Chemical Communications, 2014, 50, 13473-13476.	4.1	24
157	Synthesis of crystallized mesoporous transition metal oxides by silicone treatment of the oxide precursor. Chemical Communications, 2006, , 2188.	4.1	23
158	Heterogeneous Lewis Acid Catalysts Workable in Water. Bulletin of the Chemical Society of Japan, 2014, 87, 931-941.	3.2	23
159	Redox-Active Zeolitic Transition Metal Oxides Based on ε-Keggin Units for Selective Oxidation. Inorganic Chemistry, 2019, 58, 6283-6293.	4.0	23
160	One-pot aerobic oxidative sulfonamidation of aromatic thiols with ammonia by a dual-functional β-MnO ₂ nanocatalyst. Chemical Communications, 2020, 56, 2095-2098.	4.1	23
161	Selfâ€organized Ruthenium–Barium Core–Shell Nanoparticles on a Mesoporous Calcium Amide Matrix for Efficient Lowâ€Temperature Ammonia Synthesis. Angewandte Chemie, 2018, 130, 2678-2682.	2.0	21
162	Adsorption of hydrogen on Al(111) and Al(110): coverage and temperature dependence of adsorption states. Surface Science, 1993, 287-288, 74-78.	1.9	20

#	Article	IF	CITATIONS
163	Novel methods for preparation of ion-exchangeable thin films. Thin Solid Films, 1999, 343-344, 156-159.	1.8	20
164	Lewis acid properties of some metal salts for lactic acid formation in water: 31 P NMR spectroscopy with trimethylphosphine oxide as a molecular probe. Catalysis Today, 2014, 226, 198-203.	4.4	20
165	HREELS study on hydrogen adsorbed Al(111) surface. Chemical Physics Letters, 1991, 187, 466-470.	2.6	19
166	Preparation of Stable Langmuir-Blodgett Films of Photosynthetic Bacterial Reaction Center fromRhodopseudomonas viridisUsing Poly-L-lysine. Chemistry Letters, 1992, 21, 2277-2280.	1.3	19
167	Thermal Conversion of Methoxy Species on Dimethyl Ether Adsorbed CeO2. The Journal of Physical Chemistry, 1996, 100, 14462-14467.	2.9	17
168	Dependence of Catalytic Activity in CO Hydrogenation on Strong Basic Sites of ZrO2Surface. Chemistry Letters, 1998, 27, 65-66.	1.3	17
169	Photocatalytic activities of Cu3xLa1–xTa7O19 solid solutions for H2 evolution under visible light irradiation. Catalysis Science and Technology, 2013, 3, 3147.	4.1	17
170	Synthesis of Vanadiumâ€Incorporated, Polyoxometalateâ€Based Open Frameworks and Their Applications for Cathodeâ€Active Materials. European Journal of Inorganic Chemistry, 2016, 2016, 1242-1250.	2.0	17
171	Electronic Effect in a Ruthenium Catalyst Designed in Nanoporous N-Functionalized Carbon for Efficient Hydrogenation of Heteroarenes. ACS Applied Materials & Interfaces, 2020, 12, 52668-52677.	8.0	17
172	Novel Tetradentate Phosphonate Ligand Based Bioinspired Co-Metal–Organic Frameworks: Robust Electrocatalyst for the Hydrogen Evolution Reaction in Different Mediums. Crystal Growth and Design, 2021, 21, 2614-2623.	3.0	17
173	Ion-exchangeable thin films derived from a layered titanate, Cs0.68Ti1.83â–¡0.17O4 (â–¡:vacancy). Physical Chemistry Chemical Physics, 2001, 3, 640-644.	2.8	16
174	Aerobic oxidative C bond cleavage of aromatic alkenes by a high valency iron-containing perovskite catalyst. Catalysis Science and Technology, 2021, 11, 2369-2373.	4.1	16
175	Iron phosphate nanoparticle catalyst for direct oxidation of methane into formaldehyde: effect of surface redox and acid–base properties. Catalysis Science and Technology, 2021, 11, 6987-6998.	4.1	16
176	Sulfur-containing nitrogen-rich robust hierarchically porous organic polymer for adsorptive removal of mercury: experimental and theoretical insights. Environmental Science: Nano, 2021, 8, 2641-2649.	4.3	15
177	Synergistic Effects of Earth-Abundant Metal–Metal Oxide Enable Reductive Amination of Carbonyls at 50 °C. ACS Applied Materials & Interfaces, 2022, 14, 4144-4154.	8.0	15
178	Base-Assisted Aerobic C–H Oxidation of Alkylarenes with a Murdochite-Type Oxide Mg ₆ MnO ₈ Nanoparticle Catalyst. ACS Applied Materials & Interfaces, 2022, 14, 6528-6537.	8.0	15
179	Hydrogen adsorption on Al(110): strong orientation-dependence of aluminum hydride desorption. Surface Science, 1992, 268, L287-L292.	1.9	14
180	Photoassist-phosphorylated TiO ₂ as a catalyst for direct formation of 5-(hydroxymethyl)furfural from glucose. Physical Chemistry Chemical Physics, 2017, 19, 3688-3693.	2.8	14

#	Article	IF	CITATIONS
181	Raman Imaging Analysis of Local Crystal Structures in LiCoO2 Thin Films Calcined at Different Temperatures. Analytical Sciences, 2017, 33, 853-858.	1.6	14
182	One-pot reductive amination of carbonyl compounds with nitro compounds over a Ni/NiO composite. RSC Advances, 2020, 10, 32296-32300.	3.6	14
183	Etching of aluminum film by hydrogen atoms. Applied Physics Letters, 1991, 59, 1793-1795.	3.3	13
184	Needlelike Crystal Growth and Anisotropic Photochemical Reactivity of Ta ₃ N ₅ Synthesized in Vacuo. Journal of Physical Chemistry C, 2009, 113, 17151-17155.	3.1	13
185	Magnetic Sponge Prepared with an Alkanedithiol-Bridged Network of Nanomagnets. Journal of the American Chemical Society, 2011, 133, 11470-11473.	13.7	13
186	Transesterification of Triolein over Hydrophobic Microporous Carbon with SO ₃ H Groups. ChemCatChem, 2015, 7, 3945-3950.	3.7	13
187	Ultrathin Anionic Tungstophosphite Molecular Wire with Tunable Hydrophilicity and Catalytic Activity for Selective Epoxidation in Organic Media. Chemistry - A European Journal, 2017, 23, 17497-17503.	3.3	13
188	Surface reaction of diiodomethane with an aluminum(111) surface. The Journal of Physical Chemistry, 1992, 96, 2637-2641.	2.9	12
189	IRAS study of adsorption and transformation of CH2I2 on Al(111) surface. Surface Science, 1996, 349, 294-300.	1.9	12
190	Overall water splitting on Cu(l)-containing ternary oxides, CuMO2(M&dbndFe, Ga, Al) with delafossite structure. Studies in Surface Science and Catalysis, 1999, , 301-304.	1.5	12
191	Fungus-derived hydroxyl radicals kill hepatic cells by enhancing nuclear transglutaminase. Scientific Reports, 2017, 7, 4746.	3.3	12
192	A microporous structure of a thin film made of an ion-exchangeable layered compound. Supramolecular Science, 1998, 5, 229-233.	0.7	11
193	30 Ta3N5 and TaON as novel photocatalysts responding to visible light. Studies in Surface Science and Catalysis, 2003, , 169-172.	1.5	11
194	Surface Treatment for Conductive 12 CaOâ‹7 Al ₂ O ₃ Electride Powder by Rap Thermal Annealing Processing and Its Application to Ammonia Synthesis. ChemCatChem, 2014, 6, 1317-1323.	oid 3.7	11
195	The Assembly of an Allâ€Inorganic Porous Soft Framework from Metal Oxide Molecular Nanowires. Chemistry - A European Journal, 2017, 23, 1972-1980.	3.3	11
196	Synthesis and application of thermally stable mesoporous Ta2O5 photocatalyst for overall water decomposition. Studies in Surface Science and Catalysis, 2005, 158, 1477-1484.	1.5	10
197	Laser Mass Spectrometry: Rapid Analysis of Polychlorinated Biphenyls in Exhaust Gas of Disposal Plants. Journal of Environment and Engineering, 2007, 2, 25-34.	0.2	10
198	Preparation of porous spherical ZrO2–SiO2 composite particles using templating and its solid acidity by H2SO4 treatment. Journal of Materials Science, 2012, 47, 341-349.	3.7	10

#	Article	IF	CITATIONS
199	Observation of an alkyl aluminium complex formed by reaction of CH2I2 with an Al(111) surface. Journal of the Chemical Society Chemical Communications, 1990, , 1717.	2.0	9
200	Acidic Ultrafine Tungsten Oxide Molecular Wires for Cellulosic Biomass Conversion. Angewandte Chemie, 2016, 128, 10390-10394.	2.0	9
201	Acid Properties of Protonated Titanate Nanotubes. Journal of the Japan Petroleum Institute, 2017, 60, 113-120.	0.6	9
202	Reaction path of methoxy species to isobutene and its dependence on oxide catalysts in CO hydrogenation. Journal of Organometallic Chemistry, 1998, 551, 101-105.	1.8	8
203	Photocatalytic water decomposition by layered perovskites. Studies in Surface Science and Catalysis, 2000, , 1943-1948.	1.5	8
204	Conduction and Valence Band Positions of Ta2O5, TaON, and Ta3N5 by UPS and Electrochemical Methods ChemInform, 2003, 34, no.	0.0	8
205	Photovoltaic properties of Si-based quantum-dot-sensitized solar cells prepared using laser plasma in liquid. Japanese Journal of Applied Physics, 2014, 53, 010208.	1.5	8
206	Wavelength Programmable Organic Distributed Feedback Laser Using a Photoinduced Surface Relief Grating. Molecular Crystals and Liquid Crystals, 2006, 445, 269/[559]-273/[563].	0.9	7
207	Mechanical compression induced short-range ordering of nanographene spins. Physical Review B, 2010, 82, .	3.2	7
208	Synthesis of crystalline molybdenum oxides based on a 1D molecular structure and their ion-exchange properties. New Journal of Chemistry, 2017, 41, 4503-4509.	2.8	7
209	Preparation of SiO2-pillared layered titanate thin films. Journal of Materials Research, 2000, 15, 2587-2590.	2.6	6
210	Preparation and Catalytic Application of Transition Metal (Fe, V, or Cu) Oxides Homogeneously Dispersed in the Wall of Mesoporous Nb2O5. Chemistry Letters, 2003, 32, 1034-1035.	1.3	6
211	Reply to "Comment on â€~A Study of Mechano-Catalysts for Overall Water Splitting'― Journal of Physical Chemistry B, 2004, 108, 19078-19078.	2.6	6
212	Fluorescence Dynamics of Organic Laser Dyes in Azobenzene Polymer. Molecular Crystals and Liquid Crystals, 2006, 444, 81-86.	0.9	6
213	Safety management by use of laser mass spectrometry of polychlorinated biphenyls (PCBs) in the processed gas and work environment of a PCB disposal plant. Journal of Material Cycles and Waste Management, 2009, 11, 148-154.	3.0	6
214	Systematical investigation on characteristics of a photocatalyst: tantalum oxynitrides. Microscopy (Oxford, England), 2014, 63, 313-324.	1.5	6
215	High Oxidation Tolerance of Ru Nanoparticles on 12CaO·7Al ₂ O ₃ Electride. Journal of Physical Chemistry C, 2016, 120, 8711-8716.	3.1	6
216	Real-time Monitoring of Monochlorinated Benzene and Polychlorinated Biphenyls in the Gas Phase with On-line Detection: High Chemical Selectivity of Resonance-Enhanced Two-Photon Ionization. Analytical Sciences, 2006, 22, 603-606.	1.6	5

#	Article	IF	CITATIONS
217	Synthesis and Characterization of Semiconducting Boron-doped Amorphous Carbon Materials Using an Organic Boron Compound as a Precursor. Chemistry Letters, 2011, 40, 410-411.	1.3	5
218	Oxidation Number Estimation of Ca in Ca-N Compounds from Ca <i>K</i> -edge XANES Spectra. Bulletin of the Chemical Society of Japan, 2017, 90, 963-965.	3.2	5
219	Structureâ€Function Relationships in Fructose Dehydration to 5â€Hydroxymethylfurfural under Mild Conditions by Porous Ionic Crystals Constructed with Analogous Building Blocks. ChemCatChem, 2019, 11, 3745-3749.	3.7	5
220	A heterogeneous cobalt catalyst for C–C bond formation by a borrowing hydrogen strategy. Catalysis Science and Technology, 2022, 12, 4113-4117.	4.1	5
221	Selective CO2 reduction to methane catalyzed by mesoporous Ru-Fe3O4/CeOx-SiO2 in a fixed bed flow reactor. Molecular Catalysis, 2022, 528, 112486.	2.0	5
222	Oxysulfides Ln2Ti2S2O5 as Stable Photocatalysts for Water Oxidation and Reduction under Visible-Light Irradiation ChemInform, 2004, 35, no.	0.0	4
223	Control of Pore Size in Mesoporous Silica by Incremental Surface Modification Using Tetramethyl Orthosilicate. Chemistry Letters, 2005, 34, 596-597.	1.3	4
224	Electrical Properties of Amorphous Carbon Semiconductor Prepared Using a Naphthalene Precursor. Bulletin of the Chemical Society of Japan, 2013, 86, 45-50.	3.2	4
225	Structural Characterization of 2D Zirconomolybdate by Atomic Scale HAADF-STEM and XANES and Its Highly Stable Electrochemical Properties as a Li Battery Cathode. Inorganic Chemistry, 2017, 56, 14306-14314.	4.0	4
226	Intramolecular Electron Transfer and Oxygen Transfer of Phosphomolybdate Molecular Wires. Inorganic Chemistry, 2019, 58, 12272-12279.	4.0	4
227	Environmental Monitoring Method of Di-, Tri-, Tetra-, Penta-, and Hexa-Chlorinated Biphenyls in the Gas Phase by Use of the Picosecond Laser Ionization. Journal of Chemical Engineering of Japan, 2007, 40, 191-197.	0.6	4
228	Selective Isobutene Formation in the CO Hydrogenation over Cs-doped ZrO2. Chemistry Letters, 1997, 26, 309-310.	1.3	3
229	Crystallization of highly ordered mesoporous niobium and tantalum mixed oxide. Studies in Surface Science and Catalysis, 2004, , 951-957.	1.5	3
230	Rapid Analysis of Polychlorinated Biphenyls in the Gas Phase with Resonance-enhanced Two-photon Ionization: Optimal Injection of Ions into the Ion-trap Storage/Time-of-flight Mass Spectrometer. Analytical Sciences, 2005, 21, 1111-1115.	1.6	3
231	Nanoscale optical imaging of lithium-ion distribution on a LiCoO2cathode surface. Applied Physics Express, 2017, 10, 052503.	2.4	3
232	Benzylic C H fluorination over supported silver catalyst. Molecular Catalysis, 2019, 475, 110463.	2.0	3
233	Mechano-catalytic overall water-splitting into hydrogen and oxygen on some metal oxides. , 2000, , 159-179.		3
234	Characterization of Layered Titanate Thin Films. Electrochemistry, 1999, 67, 1224-1226.	1.4	3

#	Article	IF	CITATIONS
235	Preparation of zeolitic bismuth vanadomolybdate using a ball-shaped giant polyoxometalate for olefin epoxidation. New Journal of Chemistry, 2021, 45, 21624-21630.	2.8	3
236	Preparation of ordered mesoporous NbTa mixed oxide with crystallized wall. Studies in Surface Science and Catalysis, 2003, 146, 251-254.	1.5	2
237	Layered titanate thin film as an electrode material. Journal of Materials Research, 2004, 19, 661-666.	2.6	2
238	Sulfonated Incompletely Carbonized Glucose as Strong BrÃุnsted Acid Catalyst. Studies in Surface Science and Catalysis, 2007, 172, 405-408.	1.5	2
239	Magnetism of nanographene network influenced by the interaction with acid species. Journal of Physics and Chemistry of Solids, 2010, 71, 534-538.	4.0	2
240	MoO3/ZrO2 as a Stable, Reusable, and Highly Active Solid Acid Catalyst for Polyester Polyol Synthesis. Chemistry Letters, 2013, 42, 1314-1316.	1.3	2
241	Formation and Structural Changes of 4-Fluorobenzenethiol Self-Assembled Monolayers on Au(111). Journal of Nanoscience and Nanotechnology, 2017, 17, 5597-5600.	0.9	2
242	Standing-Up Phase of Hexanedithiol Self-Assembled Monolayers on Au(111) Induced by Displacement Reaction. Journal of Nanoscience and Nanotechnology, 2017, 17, 5780-5783.	0.9	2
243	Stability enhancement of ironâ€based perovskite catalysts by Aâ€site substitution for oxidative transposition of αâ€bromostyrene to phenacyl bromide. ChemCatChem, 0, , .	3.7	2
244	Desorption of Dimethyl Ether from a Methoxy Species Formed on a CeO2Surface. Langmuir, 1996, 12, 6712-6713.	3.5	1
245	Reply to Comment on "Thermal Conversion of Methoxy Species on Dimethyl Ether Adsorbed CeO2â€. Journal of Physical Chemistry B, 1997, 101, 1486-1487.	2.6	1
246	Novel Synthesis and Photocatalytic Activity of Oxysulfide Sm2Ti2S2O5 ChemInform, 2004, 35, no.	0.0	1
247	Preparation of crack-free, transparent, nanoporous niobium oxide film with crystalline structure by evaporation-induced self-assembly (EISA) process. Studies in Surface Science and Catalysis, 2005, , 321-326.	1.5	1
248	Photoinduced Transformation of Silicone-modified TiO2. Chemistry Letters, 2005, 34, 198-199.	1.3	1
249	Preparation of solid acid carbon coating on the surface of TiO2 by photo-CVD of gaseous aromatic hydrocarbons. Catalysis Communications, 2009, 10, 1670-1673.	3.3	1
250	Kinetic Study of Glucose Production from Cellobiose through Hydrolysis with Solid Acid Catalyst. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2013, 92, 675-681.	0.2	1
251	ã,¢ãƒ«ãƒŸãƒ<ã,¦ãƒå∓çµæ™¶èj¨é¢ã•ã,‰ã®ã,¢ãƒ«ãƒŸãƒ<ã,¦ãƒãƒã,ドラã,ドã®è,,±é›¢. Keikinzoku/Journa	al of¢a‡an I	Institute of Li
252	TiNxOyFz as a Stable Photocatalyst for Water Oxidation in Visible Light (< 570 nm) ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
253	Porous Single-Crystalline TaON and Ta3N5 Particles ChemInform, 2004, 35, no.	0.0	0
254	Electrochemical Behavior of Thin Ta3N5 Semiconductor Film ChemInform, 2004, 35, no.	0.0	0
255	Kinetic Study of Dehydrogenation between H–Siloxane and Ti–OH on TiO2. Chemistry Letters, 2005, 34, 460-461.	1.3	Ο
256	Exfoliated HNb3O8 Nanosheets as a Strong Protonic Solid Acid ChemInform, 2005, 36, no.	0.0	0
257	Photocatalytic Decomposition of Water by a Novel Photocatalyst, Ge3N4. Studies in Surface Science and Catalysis, 2007, 172, 433-436.	1.5	0
258	Ultrathin Anionic Tungstophosphite Molecular Wire with Tunable Hydrophilicity and Catalytic Activity for Selective Epoxidation in Organic Media. Chemistry - A European Journal, 2017, 23, 17397-17397.	3.3	0
259	Tin oxide-coated transition metal oxide molecular wires for biomass conversion. New Journal of Chemistry, 2020, 44, 5147-5151.	2.8	0