Fernanda Faião-Flores

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8832395/publications.pdf

Version: 2024-02-01

471061 500791 33 836 17 28 citations h-index g-index papers 33 33 33 1643 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	HDAC11 activity contributes to MEK inhibitor escape in uveal melanoma. Cancer Gene Therapy, 2022, 29, 1840-1846.	2.2	3
2	Anhydroecgonine methyl ester, a cocaine pyrolysis product, contributes to cocaine-induced rat primary hippocampal neuronal death in a synergistic and time-dependent manner. Archives of Toxicology, 2021, 95, 1779-1791.	1.9	4
3	Decitabine limits escape from MEK inhibition in uveal melanoma. Pigment Cell and Melanoma Research, 2020, 33, 507-514.	1.5	17
4	Indoleamine 2,3-dioxygenase in melanoma progression and BRAF inhibitor resistance. Pharmacological Research, 2020, 159, 104998.	3.1	10
5	In vivo antitumoral effect of 4-nerolidylcatechol (4-NC) in NRAS-mutant human melanoma. Food and Chemical Toxicology, 2020, 141, 111371.	1.8	2
6	Metalloproteinases Suppression Driven by the Curcumin Analog DM-1 Modulates Invasion in BRAF-Resistant Melanomas. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 1038-1050.	0.9	4
7	HDAC Inhibition Enhances the <i>In Vivo</i> Efficacy of MEK Inhibitor Therapy in Uveal Melanoma. Clinical Cancer Research, 2019, 25, 5686-5701.	3.2	75
8	HDAC8 Regulates a Stress Response Pathway in Melanoma to Mediate Escape from BRAF Inhibitor Therapy. Cancer Research, 2019, 79, 2947-2961.	0.4	59
9	Histone deacetylase inhibitors: a promising partner for MEK inhibitors in uveal melanoma?. Melanoma Management, 2019, 6, MMT29.	0.1	3
10	ER stress promotes antitumor effects in BRAFi/MEKi resistant human melanoma induced by natural compound 4-nerolidylcathecol (4-NC). Pharmacological Research, 2019, 141, 63-72.	3.1	14
11	Abstract 378: HDAC inhibition enhances MEK antagonist therapy in uveal melanoma through combined blockade of YAP, AKT and RTK signaling. , 2019, , .		O
12	Get with the Program! Stemness and Reprogramming in Melanoma Metastasis. Journal of Investigative Dermatology, 2018, 138, 10-13.	0.3	6
13	Abstract 4814: Adaptation of uveal melanoma cells to MEK inhibition can be overcome through HDAC inhibition. , 2018, , .		O
14	Inhibition of proliferation and invasion in 2D and 3D models by 2-methoxyestradiol in human melanoma cells. Pharmacological Research, 2017, 119, 242-250.	3.1	32
15	Toxicogenomic and bioinformatics platforms to identify key molecular mechanisms of a curcumin-analogue DM-1 toxicity in melanoma cells. Pharmacological Research, 2017, 125, 178-187.	3.1	15
16	Targeting the hedgehog transcription factors GLI1 and GLI2 restores sensitivity to vemurafenib-resistant human melanoma cells. Oncogene, 2017, 36, 1849-1861.	2.6	75
17	Vemurafenib resistance increases melanoma invasiveness and modulates the tumor microenvironment by MMP-2 upregulation. Pharmacological Research, 2016, 111, 523-533.	3.1	70
18	The role of phenotypic plasticity in the escape of cancer cells from targeted therapy. Biochemical Pharmacology, 2016, 122, 1-9.	2.0	34

#	Article	IF	Citations
19	Evaluation of the anti-inflammatory action of curcumin analog (DM1): Effect on iNOS and COX-2 gene expression and autophagy pathways. Bioorganic and Medicinal Chemistry, 2016, 24, 1927-1935.	1.4	19
20	Curcumin Analog DM-1 in Monotherapy or Combinatory Treatment with Dacarbazine as a Strategy to Inhibit In Vivo Melanoma Progression. PLoS ONE, 2015, 10, e0118702.	1.1	24
21	Glycated Reconstructed Human Skin as a Platform to Study the Pathogenesis of Skin Aging. Tissue Engineering - Part A, 2015, 21, 2417-2425.	1.6	54
22	MMP-9/RECK Imbalance: A Mechanism Associated with High-Grade Cervical Lesions and Genital Infection by Human Papillomavirus and <i>Chlamydia trachomatis</i> Prevention, 2015, 24, 1539-1547.	1.1	28
23	Melanin Photosensitization and the Effect of Visible Light on Epithelial Cells. PLoS ONE, 2014, 9, e113266.	1.1	92
24	Basic Red 51, a permitted semi-permanent hair dye, is cytotoxic to human skin cells: Studies in monolayer and 3D skin model using human keratinocytes (HaCaT). Toxicology Letters, 2014, 227, 139-149.	0.4	30
25	The curcumin analog DM-1 induces apoptotic cell death in melanoma. Tumor Biology, 2013, 34, 1119-1129.	0.8	20
26	Bcl-2 family proteins and cytoskeleton changes involved in DM-1 cytotoxic effect on melanoma cells. Tumor Biology, 2013, 34, 1235-1243.	0.8	18
27	Cell cycle arrest, extracellular matrix changes and intrinsic apoptosis in human melanoma cells are induced by Boron Neutron Capture Therapy. Toxicology in Vitro, 2013, 27, 1196-1204.	1.1	13
28	Apoptosis through Bcl-2/Bax and Cleaved Caspase Up-Regulation in Melanoma Treated by Boron Neutron Capture Therapy. PLoS ONE, 2013, 8, e59639.	1.1	25
29	Boron uptake in normal melanocytes and melanoma cells and boron biodistribution study in mice bearing B16F10 melanoma for boron neutron capture therapy. Radiation and Environmental Biophysics, 2012, 51, 319-329.	0.6	6
30	DM-1, sodium 4-[5-(4-hydroxy-3-methoxyphenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate: a curcumin analog with a synergic effect in combination with paclitaxel in breast cancer treatment. Tumor Biology, 2012, 33, 775-785.	0.8	25
31	Boron neutron capture therapy induces cell cycle arrest and DNA fragmentation in murine melanoma cells. Applied Radiation and Isotopes, 2011, 69, 1741-1744.	0.7	11
32	Antitumor potential induction and free radicals production in melanoma cells by Boron Neutron Capture Therapy. Applied Radiation and Isotopes, 2011, 69, 1748-1751.	0.7	12
33	New antitumoral agents I: In vitro anticancer activity and in vivo acute toxicity of synthetic 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadien-3-one and derivatives. Bioorganic and Medicinal Chemistry, 2010, 18, 6275-6281.	1.4	36