João N Moreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8831963/publications.pdf

Version: 2024-02-01

85 3,231 32 55 papers citations h-index g-index

85 85 85 85 4816

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	On the formulation of pH-sensitive liposomes with long circulation times. Advanced Drug Delivery Reviews, 2004, 56, 947-965.	6.6	440
2	Lipid-Based Nanoparticles for siRNA Delivery in Cancer Therapy: Paradigms and Challenges. Accounts of Chemical Research, $2012, 45, 1163-1171$.	7.6	199
3	Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Acta Biomaterialia, 2015, 18, 196-205.	4.1	154
4	Use of the post-insertion technique to insert peptide ligands into pre-formed stealth liposomes with retention of binding activity and cytotoxicity. Pharmaceutical Research, 2002, 19, 265-269.	1.7	127
5	Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of inÂvivo studies. Acta Pharmaceutica Sinica B, 2021, 11, 925-940.	5.7	113
6	Targeting Stealth liposomes in a murine model of human small cell lung cancer. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1515, 167-176.	1.4	88
7	Intravenous administration of brain-targeted stable nucleic acid lipid particles alleviates Machado-Joseph disease neurological phenotype. Biomaterials, 2016, 82, 124-137.	5.7	86
8	Tumor-targeted Chlorotoxin-coupled Nanoparticles for Nucleic Acid Delivery to Glioblastoma Cells: A Promising System for Glioblastoma Treatment. Molecular Therapy - Nucleic Acids, 2013, 2, e100.	2.3	83
9	Transferrin Receptor-Targeted Liposomes Encapsulating anti- <i>BCR-ABL</i> siRNA or asODN for Chronic Myeloid Leukemia Treatment. Bioconjugate Chemistry, 2010, 21, 157-168.	1.8	82
10	Instructive Nanofibrous Scaffold Comprising Runt-Related Transcription Factor 2 Gene Delivery for Bone Tissue Engineering. ACS Nano, 2014, 8, 8082-8094.	7.3	81
11	Rational design of nanoparticles towards targeting antigen-presenting cells and improved T cell priming. Journal of Controlled Release, 2017, 258, 182-195.	4.8	79
12	Current challenges and emerging opportunities of CAR-T cell therapies. Journal of Controlled Release, 2020, 319, 246-261.	4.8	78
13	Nucleolin overexpression in breast cancer cell sub-populations with different stem-like phenotype enables targeted intracellular delivery of synergistic drug combination. Biomaterials, 2015, 69, 76-88.	5.7	73
14	Sterols as Anticancer Agents: Synthesis of Ring-B Oxygenated Steroids, Cytotoxic Profile, and Comprehensive SAR Analysis. Journal of Medicinal Chemistry, 2010, 53, 7632-7638.	2.9	64
15	Synthesis and structure–activity relationship study of novel cytotoxic carbamate and N-acylheterocyclic bearing derivatives of betulin and betulinic acid. Bioorganic and Medicinal Chemistry, 2010, 18, 4385-4396.	1.4	63
16	ADVENTURES IN TARGETING. Journal of Liposome Research, 2002, 12, 5-12.	1.5	56
17	Targeted and intracellular triggered delivery of therapeutics to cancer cells and the tumor microenvironment: impact on the treatment of breast cancer. Breast Cancer Research and Treatment, 2012, 133, 61-73.	1.1	54
18	Immobilization of bioactive factor-loaded liposomes on the surface of electrospun nanofibers targeting tissue engineering. Biomaterials Science, 2014, 2, 1195-1209.	2.6	54

#	Article	IF	CITATIONS
19	Nucleolin-based targeting strategies for cancer therapy: from targeted drug delivery to cytotoxic ligands. Drug Discovery Today, 2019, 24, 1985-2001.	3.2	52
20	Targeting of sterically stabilised pH-sensitive liposomes to human T-leukaemia cells. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 59, 359-366.	2.0	49
21	Coâ€encapsulation of antiâ€ <i>BCRâ€ABL</i> siRNA and imatinib mesylate in transferrin receptorâ€ŧargeted sterically stabilized liposomes for chronic myeloid leukemia treatment. Biotechnology and Bioengineering, 2010, 107, 884-893.	1.7	47
22	Bcl-2-Targeted Antisense Therapy (Oblimersen Sodium): Towards Clinical Reality. Reviews on Recent Clinical Trials, 2006, 1, 217-235.	0.4	47
23	New advances in exosome-based targeted drug delivery systems. Critical Reviews in Oncology/Hematology, 2022, 172, 103628.	2.0	47
24	Selective Cytotoxicity of Oxysterols through Structural Modulation on Rings A and B. Synthesis, in Vitro Evaluation, and SAR. Journal of Medicinal Chemistry, 2011, 54, 6375-6393.	2.9	46
25	Toward a siRNA-containing nanoparticle targeted to breast cancer cells and the tumor microenvironment. International Journal of Pharmaceutics, 2012, 434, 9-19.	2.6	45
26	Using the quality by design (QbD) approach to optimize formulations of lipid nanoparticles and nanoemulsions: A review. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 28, 102206.	1.7	44
27	A growth factor antagonist as a targeting agent for sterically stabilized liposomes in human small cell lung cancer. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1514, 303-317.	1.4	40
28	Bridging cancer biology and the patients' needs with nanotechnology-based approaches. Cancer Treatment Reviews, 2014, 40, 626-635.	3.4	40
29	Synthesis and Photoluminescence of ZnS Quantum Dots. Journal of Nanoscience and Nanotechnology, 2008, 8, 1312-1315.	0.9	39
30	In Vitro Studies on Nasal Formulations of Nanostructured Lipid Carriers (NLC) and Solid Lipid Nanoparticles (SLN). Pharmaceuticals, 2021, 14, 711.	1.7	37
31	Design of peptide-targeted liposomes containing nucleic acids. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 433-441.	1.4	36
32	Simultaneous active intracellular delivery of doxorubicin and C6-ceramide shifts the additive/antagonistic drug interaction of non-encapsulated combination. Journal of Controlled Release, 2014, 196, 122-131.	4.8	34
33	On the use of dexamethasone-loaded liposomes to induce the osteogenic differentiation of human mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1056-1066.	1.3	33
34	Meeting the needs of breast cancer: A nucleolin's perspective. Critical Reviews in Oncology/Hematology, 2018, 125, 89-101.	2.0	32
35	Yeast cell wall particles: a promising class of nature-inspired microcarriers for multimodal imaging. Chemical Communications, 2011, 47, 10635.	2.2	31
36	Liposomal imatinib–mitoxantrone combination: Formulation development and therapeutic evaluation in an animal model of prostate cancer. Prostate, 2011, 71, 81-90.	1.2	31

#	Article	IF	Citations
37	Cancer Stem Cells and Nucleolin as Drivers of Carcinogenesis. Pharmaceuticals, 2021, 14, 60.	1.7	31
38	Inoculated Cell Density as a Determinant Factor of the Growth Dynamics and Metastatic Efficiency of a Breast Cancer Murine Model. PLoS ONE, 2016, 11, e0165817.	1.1	31
39	Efficient Chemoenzymatic Synthesis, Cytotoxic Evaluation, and SAR of Epoxysterols. Journal of Medicinal Chemistry, 2009, 52, 4007-4019.	2.9	30
40	The cancer stem cell phenotype as a determinant factor of the heterotypic nature of breast tumors. Critical Reviews in Oncology/Hematology, 2017, 113, 111-121.	2.0	30
41	Cell surface Nucleolin represents a novel cellular target for neuroblastoma therapy. Journal of Experimental and Clinical Cancer Research, 2021, 40, 180.	3.5	27
42	Impact of anti-PLK1 siRNA-containing F3-targeted liposomes on the viability of both cancer and endothelial cells. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 356-364.	2.0	27
43	Ciprofloxacin sensitizes hormone-refractory prostate cancer cell lines to doxorubicin and docetaxel treatment on a schedule-dependent manner. Cancer Chemotherapy and Pharmacology, 2009, 64, 445-454.	1.1	26
44	Challenging the future of siRNA therapeutics against cancer: the crucial role of nanotechnology. Cellular and Molecular Life Sciences, 2014, 71, 1417-1438.	2.4	25
45	Nucleolin is expressed in patient-derived samples and glioblastoma cells, enabling improved intracellular drug delivery and cytotoxicity. Experimental Cell Research, 2018, 370, 68-77.	1.2	24
46	Efficient intracellular delivery of siRNA with a safe multitargeted lipid-based nanoplatform. Nanomedicine, 2013, 8, 1397-1413.	1.7	23
47	Schedule treatment design and quantitative in vitro evaluation of chemotherapeutic combinations for metastatic prostate cancer therapy. Cancer Chemotherapy and Pharmacology, 2011, 67, 275-284.	1.1	17
48	Nanoparticulate vaccine inhibits tumor growth via improved T cell recruitment into melanoma and huHER2 breast cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 835-847.	1.7	17
49	Therapeutic Implications of the Molecular and Immune Landscape of Triple-Negative Breast Cancer. Pathology and Oncology Research, 2018, 24, 701-716.	0.9	17
50	MRI Tracking of Macrophages Labeled with Glucan Particles Entrapping a Water Insoluble Paramagnetic Gd-Based Agent. Molecular Imaging and Biology, 2013, 15, 307-315.	1.3	16
51	GMP-grade nanoparticle targeted to nucleolin downregulates tumor molecular signature, blocking growth and invasion, at low systemic exposure. Nano Today, 2021, 37, 101095.	6.2	15
52	Chapter 14 Targeted Lipoplexes for siRNA Delivery. Methods in Enzymology, 2009, 465, 267-287.	0.4	14
53	Supramolecular protamine/Gd-loaded liposomes adducts as relaxometric protease responsive probes. Bioorganic and Medicinal Chemistry, 2011, 19, 1131-1135.	1.4	14
54	Carboplatin liposomes coated with O-palmitoylpullulan: In vitro characterization. International Journal of Pharmaceutics, 1997, 147, 153-164.	2.6	12

#	Article	IF	Citations
55	Anticancer activity and antibody-dependent cell-mediated cytotoxicity of novel anti-nucleolin antibodies. Scientific Reports, 2018, 8, 7450.	1.6	12
56	Evaluation of in vitro stability of large unilamellar liposomes coated with a modified polysaccharide (O-palmitoylpullulan). Journal of Materials Science: Materials in Medicine, 1996, 7, 301-303.	1.7	11
57	Safety profile of the intravenous administration of brain-targeted stable nucleic acid lipid particles. Data in Brief, 2016, 6, 700-705.	0.5	11
58	Simultaneous evaluation of viability and Bclâ \in 2 in smallâ \in 6ell lung cancer. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2008, 73A, 1165-1172.	1.1	10
59	Antagonist G-mediated targeting and cytotoxicity of liposomal doxorubicin in NCI-H82 variant small cell lung cancer. Brazilian Journal of Medical and Biological Research, 2004, 37, 1185-1192.	0.7	9
60	Antagonist G-targeted liposomes for improved delivery of anticancer drugs in small cell lung carcinoma. International Journal of Pharmaceutics, 2022, 612, 121380.	2.6	8
61	The Enhanced Efficacy of Intracellular Delivery of Doxorubicin/C6-Ceramide Combination Mediated by the F3 Peptide/Nucleolin System Is Supported by the Downregulation of the PI3K/Akt Pathway. Cancers, 2021, 13, 3052.	1.7	7
62	Impact of PLK-1 Silencing on Endothelial Cells and Cancer Cells of Diverse Histological Origin. Current Gene Therapy, 2013, 13, 189-201.	0.9	7
63	Nucleolin Overexpression Predicts Patient Prognosis While Providing a Framework for Targeted Therapeutic Intervention in Lung Cancer. Cancers, 2022, 14, 2217.	1.7	7
64	In vitro modulation of Bcl-2 levels in small cell lung cancer cells: effects on cell viability. Brazilian Journal of Medical and Biological Research, 2010, 43, 1001-1009.	0.7	6
65	Development of a Novel Nanoparticle-based Therapeutic Vaccine for Breast Cancer Immunotherapy. Procedia in Vaccinology, 2014, 8, 62-67.	0.4	6
66	Dual release of a hydrophilic and a hydrophobic osteogenic factor from a single liposome. RSC Advances, 2016, 6, 114599-114612.	1.7	6
67	Modelling the impact of nucleolin expression level on the activity of F3 peptide-targeted pH-sensitive pegylated liposomes containing doxorubicin. Drug Delivery and Translational Research, 2022, 12, 629-646.	3.0	6
68	In Vitro and In Vivo Tumor Models for the Evaluation of Anticancer Nanoparticles. Advances in Experimental Medicine and Biology, 2021, 1295, 271-299.	0.8	5
69	Targeting Cancer Stem Cells and Non-Stem Cancer Cells: The Potential of Lipid- Based Nanoparticles. Current Pharmaceutical Design, 2018, 23, 6563-6572.	0.9	4
70	Technology evaluation: LErafAON, NeoPharm. Current Opinion in Molecular Therapeutics, 2003, 5, 547-52.	2.8	4
71	Insights on the Formulation of Recombinant Proteins. Advances in Biochemical Engineering/Biotechnology, 2019, 171, 23-54.	0.6	3
72	Development, Characterization and <i>In Vitro</i> Evaluation of Single or Co-Loaded Imatinib Mesylate Liposomal Formulations. Journal of Nanoscience and Nanotechnology, 2012, 12, 2891-2900.	0.9	2

#	Article	IF	CITATIONS
73	Translational Peptide-associated Nanosystems: Promising Role as Cancer Vaccines. Current Topics in Medicinal Chemistry, 2015, 16, 291-313.	1.0	2
74	Targeted liposomal doxorubicin/ceramides combinations: The importance to assess the nature of drug interaction beyond bulk tumor cells. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 172, 61-77.	2.0	2
75	Hormones, Blood Products, and Therapeutic Enzymes. Advances in Biochemical Engineering/Biotechnology, 2019, 171, 115-153.	0.6	1
76	Abstract A129: Targeted delivery of the rapeutics to tumor cells and the tumor microenvironment. , 2009, , .		1
77	Application of the Quality-by-Design (QbD) Approach to Improve the Nose-to-Brain Delivery of Diazepam-Loaded Nanostructured Lipid Carriers (NLCs). Proceedings (mdpi), 2020, 78, .	0.2	1
78	Nature-inspired particles as carriers for multimodal molecular imaging applications. , 2012, , .		0
79	Moving Liposome Technology from the Bench to the Oncological Patient: Towards Performance-by-Design. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , 171-211.	0.2	0
80	Lipid-Based Nanosystems for the Delivery of siRNA: Challenges and Trends. , 2018, , 495-515.		0
81	Abstract 4444: Targeted delivery of siRNAs to tumor cells and the tumor microenvironment. , 2011, , .		0
82	Abstract C233: Limiting tumor invasion with multifunctional nanoparticle targeting the tumor microenvironment , 2011, , .		0
83	Abstract 3003: Targeting nucleolin: A potential strategy to overcome stroma-mediated bevacizumab resistance in lung cancer. , 2014, , .		0
84	Abstract A101: Nucleolin: A novel cell surface protein for neuroblastoma targeted therapy. , 2019, , .		0
85	Quimioterapia combinada no tratamento do cancro: princÃpios e estratégias nanotecnológicas de entrega de fármacos. , 0, , 675-700.		O