Erik de Vrieze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8831599/publications.pdf

Version: 2024-02-01

40 papers 1,361 citations

361413 20 h-index 35 g-index

45 all docs

45 docs citations

45 times ranked

2256 citing authors

#	Article	IF	CITATIONS
1	An organelle-specific protein landscape identifies novel diseases and molecular mechanisms. Nature Communications, 2016, 7, 11491.	12.8	207
2	CiliaCarta: An integrated and validated compendium of ciliary genes. PLoS ONE, 2019, 14, e0216705.	2.5	104
3	Matrix metalloproteinases in osteoclasts of ontogenetic and regenerating zebrafish scales. Bone, 2011, 48, 704-712.	2.9	78
4	Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by USH2A exon 13 mutations. Molecular Therapy, 2021, 29, 2441-2455.	8.2	75
5	Prednisolone induces osteoporosis-like phenotype in regenerating zebrafish scales. Osteoporosis International, 2014, 25, 567-578.	3.1	68
6	Identification and Functional Characterization of Zebrafish Solute Carrier Slc16a2 (Mct8) as a Thyroid Hormone Membrane Transporter. Endocrinology, 2011, 152, 5065-5073.	2.8	65
7	Disruption of the Basal Body Protein POC1B Results in Autosomal-Recessive Cone-Rod Dystrophy. American Journal of Human Genetics, 2014, 95, 131-142.	6.2	65
8	The Ciliopathy Protein CC2D2A Associates with NINL and Functions in RAB8-MICAL3-Regulated Vesicle Trafficking. PLoS Genetics, 2015, 11, e1005575.	3. 5	64
9	KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome. Genome Biology, 2015, 16, 293.	8.8	56
10	Usherin defects lead to early-onset retinal dysfunction in zebrafish. Experimental Eye Research, 2018, 173, 148-159.	2.6	53
11	Elasmoid scales of fishes as model in biomedical bone research. Journal of Applied Ichthyology, 2012, 28, 382-387.	0.7	42
12	Knockdown of Monocarboxylate Transporter 8 (mct8) Disturbs Brain Development and Locomotion in Zebrafish. Endocrinology, 2014, 155, 2320-2330.	2.8	39
13	STAT genes display differential evolutionary rates that correlate with their roles in the endocrine and immune system. Journal of Endocrinology, 2011, 209, 175-184.	2.6	37
14	Identification of novel osteogenic compounds by an ex-vivo sp7:luciferase zebrafish scale assay. Bone, 2015, 74, 106-113.	2.9	33
15	Untargeted metabolomics and infrared ion spectroscopy identify biomarkers for pyridoxine-dependent epilepsy. Journal of Clinical Investigation, 2021, 131, .	8.2	33
16	Arachidonic Acid Enhances Turnover of the Dermal Skeleton: Studies on Zebrafish Scales. PLoS ONE, 2014, 9, e89347.	2.5	30
17	Whole-exome sequencing reveals POC5 as a novel gene associated with autosomal recessive retinitis pigmentosa. Human Molecular Genetics, 2018, 27, 614-624.	2.9	26
18	ALP, TRAcP and cathepsin K in elasmoid scales: a role in mineral metabolism?. Journal of Applied Ichthyology, 2010, 26, 210-213.	0.7	25

#	Article	IF	Citations
19	Clinical and preclinical therapeutic outcome metrics for USH2A-related disease. Human Molecular Genetics, 2020, 29, 1882-1899.	2.9	24
20	NINL and DZANK1 Co-function in Vesicle Transport and Are Essential for Photoreceptor Development in Zebrafish. PLoS Genetics, 2015, 11, e1005574.	3.5	23
21	Subfunctionalization of POMC paralogues in Senegalese sole (Solea senegalensis). General and Comparative Endocrinology, 2012, 175, 407-415.	1.8	22
22	Missense mutations in the WD40 domain of AHI1 cause non-syndromic retinitis pigmentosa. Journal of Medical Genetics, 2017, 54, 624-632.	3.2	21
23	Poor Splice-Site Recognition in a Humanized Zebrafish Knockin Model for the Recurrent Deep-Intronic c.7595-2144A>G Mutation in <i>USH2A</i>	1.1	21
24	Loss of Gap Junction Delta-2 (GJD2) gene orthologs leads to refractive error in zebrafish. Communications Biology, 2021, 4, 676.	4.4	19
25	Identification of a homozygous nonsense mutation in KIAA0556 in a consanguineous family displaying Joubert syndrome. Human Genetics, 2016, 135, 919-921.	3.8	18
26	A homozygous <i>FITM2 </i> mutation causes a deafness-dystonia syndrome with motor regression and signs of ichthyosis and sensory neuropathy. DMM Disease Models and Mechanisms, 2017, 10, 105-118.	2.4	16
27	A <i>RIPOR2</i> in-frame deletion is a frequent and highly penetrant cause of adult-onset hearing loss. Journal of Medical Genetics, 2021, 58, 96-104.	3.2	14
28	Homozygous variants in KIAA1549, encoding a ciliary protein, are associated with autosomal recessive retinitis pigmentosa. Journal of Medical Genetics, 2018, 55, 705-712.	3.2	13
29	Evidence for a hydroxyapatite precursor in regenerating cyprinid scales. Journal of Applied Ichthyology, 2012, 28, 388-392.	0.7	11
30	Efficient Generation of Knock-In Zebrafish Models for Inherited Disorders Using CRISPR-Cas9 Ribonucleoprotein Complexes. International Journal of Molecular Sciences, 2021, 22, 9429.	4.1	10
31	AON-based degradation of c.151C>T mutant COCH transcripts associated with dominantly inherited hearing impairment DFNA9. Molecular Therapy - Nucleic Acids, 2021, 24, 274-283.	5.1	9
32	Zebrafish as a Model to Evaluate a CRISPR/Cas9-Based Exon Excision Approach as a Future Treatment Option for EYS-Associated Retinitis Pigmentosa. International Journal of Molecular Sciences, 2021, 22, 9154.	4.1	6
33	Genotype-Phenotype Correlations of Pathogenic COCH Variants in DFNA9: A HuGE Systematic Review and Audiometric Meta-Analysis. Biomolecules, 2022, 12, 220.	4.0	5
34	Altering gene expression using antisense oligonucleotide therapy for hearing loss. Hearing Research, 2022, 426, 108523.	2.0	5
35	Scrutinizing pathogenicity of the USH2A c.2276 G > T; p.(Cys759Phe) variant. Npj Genomic Medi 2022, 7, .	cine, 3.8	5
36	Exploring the missing heritability in subjects with hearing loss, enlarged vestibular aqueducts, and a single or no pathogenic SLC26A4 variant. Human Genetics, 2022, 141, 465-484.	3.8	3

3

#	Article	IF	CITATIONS
37	Attitudes of Potential Participants Towards Potential Gene Therapy Trials in Autosomal Dominant Progressive Sensorineural Hearing Loss. Otology and Neurotology, 2021, 42, 384-389.	1.3	3
38	A Novel COCH Mutation Affects the vWFA2 Domain and Leads to a Relatively Mild DFNA9 Phenotype. Otology and Neurotology, 2021, 42, e399-e407.	1.3	2
39	Generation of Humanized Zebrafish Models for the In Vivo Assessment of Antisense Oligonucleotide-Based Splice Modulation Therapies. Methods in Molecular Biology, 2022, 2434, 281-299.	0.9	2
40	PDZD7 connects the Usher protein complex to the intraflagellar transport machinery. Cilia, 2015, 4, .	1.8	0