
Harjit Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8831500/publications.pdf Version: 2024-02-01

HADUT SINCH

#	Article	IF	CITATIONS
1	Vacuum Insulation Panels (VIPs) for building construction industry – A review of the contemporary developments and future directions. Applied Energy, 2011, 88, 3592-3602.	10.1	198
2	Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector. Journal of Nanotechnology in Engineering and Medicine, 2012, 3, .	0.8	166
3	Energy and economic analysis of Vacuum Insulation Panels (VIPs) used in non-domestic buildings. Applied Energy, 2017, 188, 1-8.	10.1	92
4	Myo-inositol based nano-PCM for solar thermal energy storage. Applied Thermal Engineering, 2017, 110, 564-572.	6.0	83
5	Experimental characterisation and evaluation of the thermo-physical properties of expanded perlite—Fumed silica composite for effective vacuum insulation panel (VIP) core. Energy and Buildings, 2014, 69, 442-450.	6.7	65
6	Factors influencing the uptake of heat pump technology by the UK domestic sector. Renewable Energy, 2010, 35, 873-878.	8.9	56
7	A review of natural convective heat transfer correlations in rectangular cross-section cavities and their potential applications to compound parabolic concentrating (CPC) solar collector cavities. Applied Thermal Engineering, 2011, 31, 2186-2196.	6.0	50
8	Modified active solar distillation system employing directly absorbing Therminol 55–Al2O3 nano heat transfer fluid and Fresnel lens concentrator. Desalination, 2019, 457, 32-38.	8.2	50
9	Directly absorbing Therminol-Al 2 O 3 nano heat transfer fluid for linear solar concentrating collectors. Solar Energy, 2016, 137, 134-142.	6.1	43
10	Experimental investigations into thermal transport phenomena in vacuum insulation panels (VIPs) using fumed silica cores. Energy and Buildings, 2015, 107, 76-83.	6.7	39
11	Modelling and experimental analysis of low concentrating solar panels for use in building integrated and applied photovoltaic (BIPV/BAPV) systems. Renewable Energy, 2019, 139, 815-829.	8.9	34
12	Theoretical and experimental evaluation of thermal interface materials and other influencing parameters for thermoelectric generator system. Renewable Energy, 2019, 134, 25-43.	8.9	34
13	Smart windows: Thermal modelling and evaluation. Solar Energy, 2014, 103, 200-209.	6.1	31
14	Correlations for natural convective heat exchange in CPC solar collector cavities determined from experimental measurements. Solar Energy, 2012, 86, 2443-2457.	6.1	30
15	Low Concentrating Photovoltaics (LCPV) for buildings and their performance analyses. Applied Energy, 2020, 279, 115839.	10.1	30
16	Investigations into nanofluids as direct solar radiation collectors. Solar Energy, 2017, 147, 426-431.	6.1	29
17	Experimental investigations into low concentrating line axis solar concentrators for CPV applications. Solar Energy, 2016, 136, 421-427.	6.1	28
18	Interventions for large-scale carbon emission reductions in future UK offices. Energy and Buildings, 2009, 41, 1374-1380.	6.7	26

Harjit Singh

#	Article	IF	CITATIONS
19	Rooftop solar Photovoltaic (PV) plant – One year measured performance and simulations. Journal of King Saud University - Science, 2021, 33, 101361.	3.5	22
20	Plasma-induced non-equilibrium electrochemistry synthesis of nanoparticles for solar thermal energy harvesting. Solar Energy, 2020, 203, 37-45.	6.1	19
21	Vacuum insulation panels for refrigerators. International Journal of Refrigeration, 2020, 112, 215-228.	3.4	18
22	Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector. , 2012, , .		17
23	Graphene nanoplatelets enhanced myo-inositol for solar thermal energy storage. Thermal Science and Engineering Progress, 2017, 2, 1-7.	2.7	16
24	Vacuum insulation in cold chain equipment: A review. Energy Procedia, 2019, 161, 232-241.	1.8	16
25	Liquid Metal Gallium in Metal Inserts for Solar Thermal Energy Storage: A Novel Heat Transfer Enhancement Technique. Solar Energy Materials and Solar Cells, 2020, 208, 110365.	6.2	14
26	Predicting the conductive heat transfer through evacuated perlite based vacuum insulation panels. International Journal of Thermal Sciences, 2022, 171, 107245.	4.9	13
27	Low melt alloy blended polyalcohol as solid-solid phase change material for energy storage: An experimental study. Applied Thermal Engineering, 2020, 175, 115362.	6.0	11
28	Development of a nano-heat transfer fluid carrying direct absorbing receiver for concentrating solar collectors. International Journal of Low-Carbon Technologies, 2016, 11, 199-204.	2.6	10
29	An Experimental Comparison of two Solar Photovoltaic- Thermal (PVT) Energy Conversion Systems for Production of Heat and Power. Energy and Power, 2012, 2, 46-50.	1.0	10
30	Long term performance analysis of low concentrating photovoltaic (LCPV) systems for building retrofit. Applied Energy, 2021, 300, 117412.	10.1	8
31	Amorphous carbon based nanofluids for direct radiative absorption in solar thermal concentrators – Experimental and computational study. Renewable Energy, 2022, 183, 651-661.	8.9	7
32	Optimum configuration of compound parabolic concentrator (CPC) solar water heater types for dwellings situated in the northern maritime climate. International Journal of Ambient Energy, 2010, 31, 47-52.	2.5	1
33	Reducing the carbon footprint of existing UK dwellings – three case studies. International Journal of Environmental Studies, 2012, 69, 253-272.	1.6	1
34	V-Trough Optimization for a Multipurpose Integrated Solar Energy Project in Helwan of Egypt. IOP Conference Series: Materials Science and Engineering, 2021, 1171, 012006.	0.6	1
35	Experimental Evaluation of Natural Convective Fluid Flow Phenomenon in Compound Parabolic Concentrating (CPC) Solar Collector Cavities. , 2010, , .		1
36	Directly Absorbing Nanofluid-Based Solar Thermal Collectors for Cairo. Innovative Renewable Energy, 2022, , 193-199.	0.4	1