Cynthia Kenyon

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8830632/cynthia-kenyon-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

23	5,455	17	29
papers	citations	h-index	g-index
29 ext. papers	6,175 ext. citations	21.7 avg, IF	5.91 L-index

#	Paper	IF	Citations
23	A genetic screen identifies new steps in oocyte maturation that enhance proteostasis in the immortal germ lineage. <i>ELife</i> , 2021 , 10,	8.9	2
22	Split-wrmScarlet and split-sfGFP: tools for faster, easier fluorescent labeling of endogenous proteins in Caenorhabditis elegans. <i>Genetics</i> , 2021 , 217,	4	3
21	X Chromosome Domain Architecture Regulates Caenorhabditis elegans Lifespan but Not Dosage Compensation. <i>Developmental Cell</i> , 2019 , 51, 192-207.e6	10.2	19
20	Sydney Brenner (1927-2019). <i>Science</i> , 2019 , 364, 638	33.3	2
19	The mTOR Target S6 Kinase Arrests Development in When the Heat-Shock Transcription Factor Is Impaired. <i>Genetics</i> , 2018 , 210, 999-1009	4	1
18	How a Mutation that Slows Aging Can Also Disproportionately Extend End-of-Life Decrepitude. <i>Cell Reports</i> , 2017 , 19, 441-450	10.6	57
17	A lysosomal switch triggers proteostasis renewal in the immortal C. elegans germ lineage. <i>Nature</i> , 2017 , 551, 629-633	50.4	78
16	Deep Proteome Analysis Identifies Age-Related Processes in C. Lelegans. Cell Systems, 2016, 3, 144-159	10.6	58
15	Reversible Age-Related Phenotypes Induced during Larval Quiescence in C. elegans. <i>Cell Metabolism</i> , 2016 , 23, 1113-1126	24.6	33
14	Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E28	3 ¹ 2 ¹ -4 ⁵ 1	78
13	Interventions to Slow Aging in Humans: Are We Ready?. Aging Cell, 2015, 14, 497-510	9.9	373
12	A pathway that links reproductive status to lifespan in Caenorhabditis elegans. <i>Annals of the New York Academy of Sciences</i> , 2010 , 1204, 156-62	6.5	128
11	Widespread protein aggregation as an inherent part of aging in C. elegans. <i>PLoS Biology</i> , 2010 , 8, e1000)4 59	431
10	The plasticity of aging: insights from long-lived mutants. <i>Cell</i> , 2005 , 120, 449-60	56.2	1068
9	My adventures with genes from the fountain of youth. <i>Harvey Lectures</i> , 2004 , 100, 29-70		5
8	Rates of behavior and aging specified by mitochondrial function during development. <i>Science</i> , 2002 , 298, 2398-401	33.3	827
7	Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. <i>Nature Genetics</i> , 2001 , 28, 139-45	36.3	767

LIST OF PUBLICATIONS

6	Regulation of Longevity by Insulin/Igf-1 Signaling, Sensory Neurons and the Germline in the Nematode C. Elegans. <i>Scientific World Journal, The</i> , 2001 , 1, 132	2.2	2
5	daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. <i>Science</i> , 1997 , 278, 1319-22	33.3	1237
4	Correct Hox gene expression established independently of position in Caenorhabditis elegans. <i>Nature</i> , 1996 , 382, 353-6	50.4	35
3	Specification of anteroposterior cell fates in Caenorhabditis elegans by Drosophila Hox proteins. <i>Nature</i> , 1995 , 377, 229-32	50.4	44
2	Activation of a C. elegans Antennapedia homologue in migrating cells controls their direction of migration. <i>Nature</i> , 1992 , 355, 255-8	50.4	148
1	Regulation of cellular responsiveness to inductive signals in the developing C. elegans nervous system. <i>Nature</i> , 1991 , 350, 712-5	50.4	57