
Rasheedunnisa Begum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8830550/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of the Role of Interleukin 6 in Vitiligo Pathogenesis. Immunological Investigations, 2022, 51, 120-137.	2.0	16
2	Meta-analysis for association of TNFA-308(GÂ>ÂA) SNP with vitiligo susceptibility. Gene, 2022, 809, 146027.	2.2	13
3	Diabetes mellitus and melatonin: Where are we?. Biochimie, 2022, 202, 2-14.	2.6	21
4	Calorie restriction potentiates the therapeutic potential of GABA in managing type 2 diabetes in a mouse model. Life Sciences, 2022, 295, 120382.	4.3	9
5	The Immunogenetics of Vitiligo: An Approach Toward Revealing the Secret of Depigmentation. Advances in Experimental Medicine and Biology, 2022, 1367, 61-103.	1.6	0
6	Suppression of oxidative-stress induced melanocyte death: Role of poly(ADP-ribose) polymerase in vitiligo pathogenesis. Indian Journal of Dermatology, Venereology and Leprology, 2022, 88, 413-415.	0.6	1
7	A novel therapeutic combination of sitagliptin and melatonin regenerates pancreatic β-cells in mouse and human islets. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119263.	4.1	8
8	Calcium controlled NFATc1 activation enhances suppressive capacity of regulatory T cells isolated from generalized vitiligo patients. Immunology, 2022, 167, 314-327.	4.4	13
9	Association of FOXP3 and GAGE10 promoter polymorphisms and decreased FOXP3 expression in regulatory T cells with susceptibility to generalized vitiligo in Gujarat population. Gene, 2021, 768, 145295.	2.2	17
10	Tumor Necrosis Factor-alpha affects melanocyte survival and melanin synthesis via multiple pathways in vitiligo. Cytokine, 2021, 140, 155432.	3.2	23
11	Emerging role of Tissue Resident Memory T cells in vitiligo: From pathogenesis to therapeutics. Autoimmunity Reviews, 2021, 20, 102868.	5.8	21
12	Identification and characterization of Poly(ADP-ribose) polymerase-1 interacting proteins during development of Dictyostelium discoideum. Protein Expression and Purification, 2021, 186, 105923.	1.3	2
13	Expression analysis of candidate genes in vitiligo patients & effect of oxidative stress on melanocytes. Gene Reports, 2021, 25, 101389.	0.8	1
14	Elevated X-Box Binding Protein1 Splicing and Interleukin-17A Expression Are Associated With Active Generalized Vitiligo in Gujarat Population. Frontiers in Immunology, 2021, 12, 801724.	4.8	6
15	Intron specific polymorphic site of vaspin gene along with vaspin circulatory levels can influence pathophysiology of type 2 diabetes. Life Sciences, 2020, 243, 117285.	4.3	6
16	Decreased suppression of CD8 ⁺ and CD4 ⁺ T cells by peripheral regulatory T cells in generalized vitiligo due to reduced NFATC1 and FOXP3 proteins. Experimental Dermatology, 2020, 29, 759-775.	2.9	35
17	Signaling interplay between PARP1 and ROS regulates stress-induced cell death and developmental changes in Dictyostelium discoideum. Experimental Cell Research, 2020, 397, 112364.	2.6	7
18	Glimpses of Dictyostelid research in India. International Journal of Developmental Biology, 2020, 64, 99-107.	0.6	4

Rasheedunnisa Begum

#	Article	IF	CITATIONS
19	β-cell replenishment: Possible curative approaches for diabetes mellitus. Nutrition, Metabolism and Cardiovascular Diseases, 2020, 30, 1870-1881.	2.6	9
20	Role of PARP-1 in mitochondrial homeostasis. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129669.	2.4	27
21	A genetic analysis identifies a haplotype at adiponectin locus: Association with obesity and type 2 diabetes. Scientific Reports, 2020, 10, 2904.	3.3	21
22	Altered expression of nuclear factor of activated T cells, forkhead box P3, and immuneâ€suppressive genes in regulatory T cells of generalized vitiligo patients. Pigment Cell and Melanoma Research, 2020, 33, 566-578.	3.3	46
23	Apoptosis inducing factor: Cellular protective function in Dictyostelium discoideum. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148158.	1.0	7
24	Insights into the functional aspects of poly(ADPâ€ribose) polymeraseâ€1 (PARPâ€1) in mitochondrial homeostasis inDictyostelium discoideum. Biology of the Cell, 2020, 112, 222-237.	2.0	8
25	A Concise Review on the Role of Endoplasmic Reticulum Stress in the Development of Autoimmunity in Vitiligo Pathogenesis. Frontiers in Immunology, 2020, 11, 624566.	4.8	27
26	Antibacterial Activity of Marine Bacterial Pigments Obtained from Arabian Sea Water Samples. Journal of Pure and Applied Microbiology, 2020, 14, 517-526.	0.9	3
27	Phosphodiesterase 8B Polymorphism rs4704397 Is Associated with Infertility in Subclinical Hypothyroid Females: A Case-Control Study. International Journal of Fertility & Sterility, 2020, 14, 122-128.	0.2	0
28	Genetic variants of tumor necrosis factor-α and its levels: A correlation with dyslipidemia and type 2 diabetes susceptibility. Clinical Nutrition, 2019, 38, 1414-1422.	5.0	17
29	Genetic variants of resistin and its plasma levels: Association with obesity and dyslipidemia related to type 2 diabetes susceptibility. Genomics, 2019, 111, 980-985.	2.9	20
30	EDTA apped Iron Oxide Core orona System as Vehicle for Gene Delivery to Transform E.coli : Mimicking the Lipid Bilayer Environment. ChemistrySelect, 2019, 4, 7883-7890.	1.5	1
31	Circulatory Omentin-1 levels but not genetic variants influence the pathophysiology of Type 2 diabetes. Cytokine, 2019, 119, 144-151.	3.2	19
32	Poly(ADPâ€ribose) polymeraseâ€1 (PARPâ€1) regulates developmental morphogenesis and chemotaxis inDictyostelium discoideum. Biology of the Cell, 2019, 111, 187-197.	2.0	6
33	Cytokines: the yin and yang of vitiligo pathogenesis. Expert Review of Clinical Immunology, 2019, 15, 177-188.	3.0	22
34	Association of glucose 6-phosphate dehydrogenase (G6PD) 3'UTR polymorphism with vitiligo and in vitro studies on G6PD inhibition in melanocytes. Journal of Dermatological Science, 2019, 93, 133-135.	1.9	6
35	Crucial role of poly (ADP-ribose) polymerase (PARP-1) in cellular proliferation ofDictyostelium discoideum. Journal of Cellular Physiology, 2019, 234, 7539-7547.	4.1	6
36	112-LB: Melatonin and DPP-IV Inhibitor: A Novel Combinatorial Approach for ß-Cell Regeneration. Diabetes, 2019, 68, 112-LB.	0.6	3

Rasheedunnisa Begum

#	Article	IF	CITATIONS
37	143-LB: Calorie Restriction in Combination with GABA Ameliorates Type 2 Diabetes. Diabetes, 2019, 68, .	0.6	4
38	Association of elevated homocysteine levels and Methylenetetrahydrofolate reductase (MTHFR) 1298 Aâ€>â€C polymorphism with Vitiligo susceptibility in Gujarat. Journal of Dermatological Science, 2018, 90, 112-122.	1.9	16
39	Insertion-deletion polymorphism of angiotensin converting enzyme and susceptibility to rheumatoid arthritis in South Gujarat population. Gene Reports, 2018, 13, 42-48.	0.8	3
40	Role of TNF â^'308 G/A, TNFβ +252 A/G and IL10 â^'592 C/A and â^'1082 G/A SNPs in pathogenesis of Immune Thrombocytopenia Purpura in population of Gujarat, India. Gene Reports, 2018, 12, 304-309.	0.8	3
41	Association of melatonin & MTNR1B variants with type 2 diabetes in Gujarat population. Biomedicine and Pharmacotherapy, 2018, 103, 429-434.	5.6	34
42	Treatment Avenues for Type 2 Diabetes and Current Perspectives on Adipokines. Current Diabetes Reviews, 2018, 14, 201-221.	1.3	17
43	Association of interleukin 1 receptor antagonist intron 2 variable number of tandem repeats polymorphism with vitiligo susceptibility in Gujarat population. Indian Journal of Dermatology, Venereology and Leprology, 2018, 84, 285.	0.6	14
44	Poly (ADP-ribose) polymerase in growth, death, multicellularity. Seminars in Cell and Developmental Biology, 2017, 63, 79-80.	5.0	0
45	Revisiting aryl amidine synthesis using metal amide and/or ammonia gas: Novel molecules and their biological evaluation. Synthetic Communications, 2017, 47, 1400-1408.	2.1	0
46	The catalase gene promoter and 5Ê1-untranslated region variants lead to altered gene expression and enzyme activity in vitiligo. British Journal of Dermatology, 2017, 177, 1590-1600.	1.5	29
47	Poly ADP-ribose polymerase-1: Beyond transcription and towards differentiation. Seminars in Cell and Developmental Biology, 2017, 63, 167-179.	5.0	29
48	Potential role of Apoptosis Inducing Factor in evolutionarily significant eukaryote, Dictyostelium discoideum survival. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2942-2955.	2.4	13
49	A case-control study on association of proteasome subunit beta 8 (PSMB8) and transporter associated with antigen processing 1 (TAP1) polymorphisms and their transcript levels in vitiligo from Gujarat. PLoS ONE, 2017, 12, e0180958.	2.5	26
50	Association of Cytotoxic T-Lymphocyte Antigen 4 (CTLA4) and Thyroglobulin (TG) Genetic Variants with Autoimmune Hypothyroidism. PLoS ONE, 2016, 11, e0149441.	2.5	30
51	Association of Neuropeptide-Y (NPY) and Interleukin-1beta (IL1B), Genotype-Phenotype Correlation and Plasma Lipids with Type-II Diabetes. PLoS ONE, 2016, 11, e0164437.	2.5	27
52	The <scp>PARP</scp> family: insights into functional aspects of poly (<scp>ADP</scp> â€ribose) polymeraseâ€1 in cell growth and survival. Cell Proliferation, 2016, 49, 421-437.	5.3	79
53	miRNA signatures and transcriptional regulation of their target genes in vitiligo. Journal of Dermatological Science, 2016, 84, 50-58.	1.9	39
54	Poly (ADP-ribose) polymerase1 regulates growth and multicellularity in D. discoideum. Differentiation, 2016, 92, 10-23.	1.9	9

#	Article	IF	CITATIONS
55	EDTA capped iron oxide nanoparticles magnetic micelles: drug delivery vehicle for treatment of chronic myeloid leukemia and T1–T2 dual contrast agent for magnetic resonance imaging. New Journal of Chemistry, 2016, 40, 9507-9519.	2.8	16
56	Genetic variations (Arg5Pro and Leu6Pro) modulate the structure and activity of <scp>GPX</scp> 1 and genetic risk for vitiligo. Experimental Dermatology, 2016, 25, 654-657.	2.9	16
57	Sialylation: an Avenue to Target Cancer Cells. Pathology and Oncology Research, 2016, 22, 443-447.	1.9	101
58	Response of <i>Dictyostelium discoideum</i> to <scp>UV</scp> and involvement of poly (<scp>ADP</scp> â€ribose) polymerase. Cell Proliferation, 2015, 48, 363-374.	5.3	11
59	Vitiligo â \in " A Complex Autoimmune Skin Depigmenting Disease. , 2015, , .		5
60	VEGFA isoforms play a vital role in oral cancer progression. Tumor Biology, 2015, 36, 6321-6332.	1.8	15
61	Regulatory T cells in vitiligo: Implications for pathogenesis and therapeutics. Autoimmunity Reviews, 2015, 14, 49-56.	5.8	95
62	Association of Neuropeptide Y (NPY), Interleukin-1B (IL1B) Genetic Variants and Correlation of IL1B Transcript Levels with Vitiligo Susceptibility. PLoS ONE, 2014, 9, e107020.	2.5	64
63	Proteases involved during oxidative stress-induced poly(ADP-ribose) polymerase-mediated cell death in Dictyostelium discoideum. Microbiology (United Kingdom), 2014, 160, 1101-1111.	1.8	15
64	Skin miRNA profiling reveals differentially expressed miRNA signatures from non-segmental vitiligo patients. Molecular Cytogenetics, 2014, 7, P118.	0.9	4
65	Prevalence of highâ€risk human papillomavirus type 16 and 18 in oral and cervical cancers in population from <scp>G</scp> ujarat, <scp>W</scp> est <scp>I</scp> ndia. Journal of Oral Pathology and Medicine, 2014, 43, 293-297.	2.7	27
66	Micro RNA profiling reveals differentially expressed micro RNA signatures from the skin of patients with nonsegmental vitiligo. British Journal of Dermatology, 2014, 171, 1263-1267.	1.5	41
67	Involvement of poly(ADP-ribose) polymerase in paraptotic cell death of D. discoideum. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 90-101.	4.9	17
68	Salivary Glyco-sialylation changes monitors oral carcinogenesis. Glycoconjugate Journal, 2014, 31, 649-659.	2.7	11
69	Methylenetetrahydrofolate reductase (MTHFR): could it be a small piece in vitiligo jigsaw puzzle?. British Journal of Dermatology, 2014, 170, 1009-1010.	1.5	2
70	In vitro effect of immune regulatory cytokines on vitiligo pathogenesis. BMC Genomics, 2014, 15, P39.	2.8	1
71	Role of oxidative stress and autoimmunity in onset and progression of vitiligo. Experimental Dermatology, 2014, 23, 352-353.	2.9	57
72	Decreased regulatory <scp>T</scp> â€cells and <scp>CD</scp> 4 ⁺ / <scp>CD</scp> 8 ⁺ ratio correlate with disease onset and progression in patients with generalized vitiligo. Pigment Cell and Melanoma Research, 2013, 26, 586-591.	3.3	116

#	Article	IF	CITATIONS
73	Involvement of superoxide dismutase isoenzymes and their genetic variants in progression of and higher susceptibility to vitiligo. Free Radical Biology and Medicine, 2013, 65, 1110-1125.	2.9	48
74	Evaluation of serum and salivary total sialic acid and α-l-fucosidase in patients with oral precancerous conditions and oral cancer. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2013, 115, 764-771.	0.4	37
75	Correlation of increased MYG1 expression and its promoter polymorphism with disease progression and higher susceptibility in vitiligo patients. Journal of Dermatological Science, 2013, 71, 195-202.	1.9	21
76	Involvement of Interferon-Gamma Genetic Variants and Intercellular Adhesion Molecule-1 in Onset and Progression of Generalized Vitiligo. Journal of Interferon and Cytokine Research, 2013, 33, 646-659.	1.2	59
77	Association of Generalized Vitiligo with MHC Class II Loci in Patients from the Indian Subcontinent. Journal of Investigative Dermatology, 2013, 133, 1369-1372.	0.7	32
78	Vitiligo: interplay between oxidative stress and immune system. Experimental Dermatology, 2013, 22, 245-250.	2.9	202
79	Association of <i>NLRP1</i> genetic variants and mRNA overexpression with generalized vitiligo and disease activity in a Gujarat population. British Journal of Dermatology, 2013, 169, 1114-1125.	1.5	41
80	Tumor Necrosis Factor B (TNFB) Genetic Variants and Its Increased Expression Are Associated with Vitiligo Susceptibility. PLoS ONE, 2013, 8, e81736.	2.5	32
81	Association between p53 Gene Variants and Oral Cancer Susceptibility in Population from Gujarat, West India. Asian Pacific Journal of Cancer Prevention, 2013, 14, 1093-1100.	1.2	14
82	Dose Reduction of a Potent Topical Corticosteroid with Microemulsion Based Cream. Journal of Nanopharmaceutics and Drug Delivery, 2013, 1, 52-63.	0.3	4
83	<i>Oreocnide integrifolia</i> Flavonoids Augment Reprogramming for Islet Neogenesis and <i>β</i> -Cell Regeneration in Pancreatectomized BALB/c Mice. Evidence-based Complementary and Alternative Medicine, 2012, 2012, 1-13.	1.2	7
84	HLA Alleles and Amino-Acid Signatures of the Peptide-Binding Pockets of HLA Molecules in Vitiligo. Journal of Investigative Dermatology, 2012, 132, 124-134.	0.7	61
85	Glycoprotein electrophoretic patterns have potential to monitor changes associated with neoplastic transformation in oral cancer. International Journal of Biological Markers, 2012, 27, 247-256.	1.8	2
86	Interleukin-4 genetic variants correlate with its transcript and protein levels in patients with vitiligo. British Journal of Dermatology, 2012, 167, 314-323.	1.5	73
87	Suppression of cytokine gene expression and improved therapeutic efficacy of microemulsion-based tacrolimus cream for atopic dermatitis. Drug Delivery and Translational Research, 2012, 2, 129-141.	5.8	17
88	Increased Tumor Necrosis Factor (TNF)-α and Its Promoter Polymorphisms Correlate with Disease Progression and Higher Susceptibility towards Vitiligo. PLoS ONE, 2012, 7, e52298.	2.5	92
89	Staurosporine induced poly (ADP-ribose) polymerase independent cell death in Dictyostelium discoideum. Indian Journal of Experimental Biology, 2012, 50, 80-6.	0.0	6
90	Cytotoxic Tâ€lymphocyteâ€associated antigenâ€4 (<i>CTLA</i> â€4) in isolated vitiligo: a genotypeâ€phenotype correlation. Pigment Cell and Melanoma Research, 2011, 24, 737-740.	3.3	37

#	Article	IF	CITATIONS
91	A Review on Salivary Genomics and Proteomics Biomarkers in Oral Cancer. Indian Journal of Clinical Biochemistry, 2011, 26, 326-334.	1.9	106
92	Antioxidant rich flavonoids from Oreocnide integrifolia enhance glucose uptake and insulin secretion and protects pancreatic β-cells from streptozotocin insult. BMC Complementary and Alternative Medicine, 2011, 11, 126.	3.7	18
93	Differential Role of Poly(ADP-ribose) polymerase in D. discoideum growth and development. BMC Developmental Biology, 2011, 11, 14.	2.1	17
94	Lack of genetic association of promoter and structural variants of mannan-binding lectin (<i>MBL2</i>) gene with susceptibility to generalized vitiligo. British Journal of Dermatology, 2009, 161, 63-69.	1.5	12
95	Association of PTPN22 1858C/T polymorphism with vitiligo susceptibility in Gujarat population. Journal of Dermatological Science, 2008, 49, 260-262.	1.9	31
96	The <i>ACE</i> gene I/ D polymorphism is not associated with generalized vitiligo susceptibility in Gujarat population. Pigment Cell and Melanoma Research, 2008, 21, 407-408.	3.3	34
97	Association of catalase T/C exon 9 and glutathione peroxidase codon 200 polymorphisms in relation to their activities and oxidative stress with vitiligo susceptibility in Gujarat population. Pigment Cell & Melanoma Research, 2007, 20, 405-407.	3.6	46
98	Effect of oxidative stress and involvement of poly(ADPâ€ribose) polymerase (PARP) in <i>Dictyostelium discoideum</i> development. FEBS Journal, 2007, 274, 5611-5618.	4.7	27
99	Signaling molecules involved in the transition of growth to development of Dictyostelium discoideum. Indian Journal of Experimental Biology, 2007, 45, 223-36.	0.0	4
100	Antioxidant status of segmental and non-segmental vitiligo. Pigment Cell & Melanoma Research, 2006, 19, 179-180.	3.6	29
101	Vitiligo: Clinical profiles in Vadodara, Gujarat. Indian Journal of Dermatology, 2006, 51, 100.	0.3	44
102	Acetylcholine esterase levels in different clinical types of vitiligo in Baroda, Gujarat. Indian Journal of Dermatology, 2006, 51, 289.	0.3	14
103	Vitiligo: pathomechanisms and genetic polymorphism of susceptible genes. Indian Journal of Experimental Biology, 2006, 44, 526-39.	0.0	31
104	Study on the Antioxidant Status of Vitiligo Patients of Different Age Groups in Baroda. Pigment Cell & Melanoma Research, 2004, 17, 289-294.	3.6	66
105	Biochemical basis of the high resistance to oxidative stress inDictyostelium discoideum. Journal of Biosciences, 2003, 28, 581-588.	1.1	31
106	Antioxidants prevent UV-induced apoptosis by inhibiting mitochondrial cytochrome c release and caspase activation in Spodoptera frugiperda (Sf9) cells. Cell Biology International, 2003, 27, 483-490.	3.0	39
107	Programmed cell death and its clinical implications. Indian Journal of Experimental Biology, 2002, 40, 513-24.	0.0	10
108	The baculovirus antiapoptotic p35 gene also functions via an oxidant-dependent pathway. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4838-4843.	7.1	52

#	Article	IF	CITATIONS
109	Invitro culturedSpodoptera frugiperda insect cells: Model for oxidative stress-induced apoptosis. Journal of Biosciences, 1999, 24, 13-19.	1.1	27
110	Effect of homeopathic drugs plumbum and opium on experimentally induced lead toxicity in rats. Indian Journal of Experimental Biology, 1994, 32, 192-5.	0.0	3
111	A Haplotype at Adiponectin Locus: Relevance with Obesity and Type 2 Diabetes. SSRN Electronic Journal, 0, , .	0.4	1
112	Altered Levels of Negative Costimulatory Molecule V-Set Domain-Containing T-Cell Activation Inhibitor-1 (VTCN1) and Metalloprotease Nardilysin (NRD1) are Associated with Generalized Active Vitiligo. Immunological Investigations, 0, , 1-18.	2.0	1