Jana Kraft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8830140/publications.pdf Version: 2024-02-01

ΙλΝΛ ΚΟΛΕΤ

#	Article	IF	CITATIONS
1	Dietary fat quality impacts metabolic impairments of type 2 diabetes risk differently in male and female CD-1 ^{A®} mice. British Journal of Nutrition, 2022, 128, 1013-1028.	1.2	2
2	Assessing the validity of plasma phospholipid fatty acids as biomarkers of dairy fat intake using data from a randomized controlled intervention trial. American Journal of Clinical Nutrition, 2022, 115, 1577-1588.	2.2	3
3	The impact of low-fat and full-fat dairy foods on symptoms of gastroesophageal reflux disease: an exploratory analysis based on a randomized controlled trial. European Journal of Nutrition, 2022, 61, 2815-2823.	1.8	4
4	The impact of diets rich in low-fat or full-fat dairy on glucose tolerance and its determinants: a randomized controlled trial. American Journal of Clinical Nutrition, 2021, 113, 534-547.	2.2	23
5	Benefits and Limitations of Non-Transgenic Micronutrient Biofortification Approaches. Agronomy, 2021, 11, 464.	1.3	31
6	Tissue and Circulating Fatty Acids as Biomarkers to Evaluate Long-Term Fat Intake Are Tissue and Sex Dependent in CD-1 Mice. Journal of Nutrition, 2021, 151, 1779-1790.	1.3	2
7	Impact of low-fat and full-fat dairy foods on fasting lipid profile and blood pressure: exploratory endpoints of a randomized controlled trial. American Journal of Clinical Nutrition, 2021, 114, 882-892.	2.2	22
8	Omega-3 Fatty Acid Fortification of Flax Through Nutri-Priming. Frontiers in Nutrition, 2021, 8, 715287.	1.6	3
9	In Utero Exposure to trans-10, cis-12 Conjugated Linoleic Acid Modifies Postnatal Development of the Mammary Gland and its Hormone Responsiveness. Journal of Mammary Gland Biology and Neoplasia, 2021, 26, 263-276.	1.0	2
10	Branched-Chain Fatty Acids—An Underexplored Class of Dairy-Derived Fatty Acids. Nutrients, 2020, 12, 2875.	1.7	83
11	Facility-dependent metabolic phenotype and gut bacterial composition in CD-1 mice from a single vendor: A brief report. PLoS ONE, 2020, 15, e0238893.	1.1	4
12	Bioactivity and health effects of ruminant meat lipids. Invited Review. Meat Science, 2020, 165, 108114.	2.7	81
13	Fatty Acid Content of Retail Cow's Milk in the Northeastern United States—What's in It for the Consumer?. Journal of Agricultural and Food Chemistry, 2020, 68, 4268-4276.	2.4	13
14	Dairy Fat Consumption and the Risk of Metabolic Syndrome: An Examination of the Saturated Fatty Acids in Dairy. Nutrients, 2019, 11, 2200.	1.7	52
15	Colonic bacterial composition is sex-specific in aged CD-1 mice fed diets varying in fat quality. PLoS ONE, 2019, 14, e0226635.	1.1	9
16	Alteration of Rumen Bacteria and Protozoa Through Grazing Regime as a Tool to Enhance the Bioactive Fatty Acid Content of Bovine Milk. Frontiers in Microbiology, 2018, 9, 904.	1.5	19
17	Milk from cows grazing on cool-season pastures provides an enhanced profile of bioactive fatty acids compared to those grazed on a monoculture of pearl millet. Food Chemistry, 2017, 217, 750-755.	4.2	17
18	Lipid Encapsulation Provides Insufficient Total-Tract Digestibility to Achieve an Optimal Transfer Efficiency of Fatty Acids to Milk Fat. PLoS ONE, 2016, 11, e0164700.	1.1	6

Jana Kraft

#	Article	IF	CITATIONS
19	Content and Composition of Branched-Chain Fatty Acids in Bovine Milk Are Affected by Lactation Stage and Breed of Dairy Cow. PLoS ONE, 2016, 11, e0150386.	1.1	38
20	Lipid-Encapsulated Echium Oil (<i>Echium plantagineum</i>) Increases the Content of Stearidonic Acid in Plasma Lipid Fractions and Milk Fat of Dairy Cows. Journal of Agricultural and Food Chemistry, 2015, 63, 4827-4835.	2.4	24
21	Dairyâ€derived bioactive fatty acids improve pancreatic ßâ€cell function. FASEB Journal, 2015, 29, 608.25.	0.2	17
22	Diet-induced metabolic change induces estrogen-independent allometric mammary growth. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16294-16299.	3.3	24
23	Application of a Novel, Heated, Nineâ€Reflection ATR Crystal and a Portable FTIR Spectrometer to the Rapid Determination of Total <i>Trans</i> Fat. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 419-429.	0.8	24
24	Ruminant-Produced trans-Fatty Acids Raise Plasma Total and Small HDL Particle Concentrations in Male Hartley Guinea Pigs ,. Journal of Nutrition, 2010, 140, 2173-2179.	1.3	13
25	Combining Results of Two GC Separations Partly Achieves Determination of All <i>cis</i> and <i>trans</i> 16:1, 18:1, 18:2 and 18:3 Except CLA Isomers of Milk Fat as Demonstrated Using Agâ€Ion SPE Fractionation. Lipids, 2008, 43, 259-273.	0.7	351
26	Extensive Analysis of Long-Chain Polyunsaturated Fatty Acids, CLA, <i>trans</i> -18:1 Isomers, and Plasmalogenic Lipids in Different Retail Beef types. Journal of Agricultural and Food Chemistry, 2008, 56, 4775-4782.	2.4	59
27	The Conversion Efficiency of trans-11 and trans-12 18:1 by Δ9-Desaturation Differs in Rats. Journal of Nutrition, 2006, 136, 1209-1214.	1.3	29
28	Differences in CLA isomer distribution of cow's milk lipids. Lipids, 2003, 38, 657-664.	0.7	200
29	Conjugated linoleic acids: Physiological effects in animal and man with special regard to body composition. European Journal of Lipid Science and Technology, 2000, 102, 695-703.	1.0	55