
Martin J Stoermer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8830105/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Orally Absorbed Cyclic Peptides. Chemical Reviews, 2017, 117, 8094-8128.	47.7	307
2	Stereoelectronic Effects on Dienophile Separation Influence the Diels–Alder Synthesis of Molecular Clefts. European Journal of Organic Chemistry, 2017, 2017, 6793-6796.	2.4	0
3	Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists. Scientific Reports, 2016, 6, 24575.	3.3	38
4	Simultaneous uncoupled expression and purification of the Dengue virus NS3 protease and NS2B co-factor domain. Protein Expression and Purification, 2016, 119, 124-129.	1.3	18
5	Virtual Screening of Peptide and Peptidomimetic Fragments Targeted to Inhibit Bacterial Dithiol Oxidase DsbA. PLoS ONE, 2015, 10, e0133805.	2.5	16
6	Three Homology Models of PAR2 Derived from Different Templates: Application to Antagonist Discovery. Journal of Chemical Information and Modeling, 2015, 55, 1181-1191.	5.4	16
7	Downsizing Proteins Without Losing Potency or Function. , 2015, , .		0
8	Potent Heterocyclic Ligands for Human Complement C3a Receptor. Journal of Medicinal Chemistry, 2014, 57, 8459-8470.	6.4	19
9	Cyclic Penta- and Hexaleucine Peptides without <i>N</i> -Methylation Are Orally Absorbed. ACS Medicinal Chemistry Letters, 2014, 5, 1148-1151.	2.8	55
10	Identification and characterization of bi-thiazole-2,2′-diamines as kinase inhibitory scaffolds. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1077-1088.	2.3	8
11	Lithium perchlorate accelerated Friedel–Crafts addition of furans to β-nitrostyrenes. Tetrahedron Letters, 2013, 54, 6776-6778.	1.4	7
12	An interaction between the methyltransferase and RNA dependent RNA polymerase domains of the West Nile virus NS5 protein. Journal of General Virology, 2013, 94, 1961-1971.	2.9	17
13	Downsizing a human inflammatory protein to a small molecule with equal potency and functionality. Nature Communications, 2013, 4, 2802.	12.8	28
14	Identification of crotonyl glycine in urine of sheep after 48h road transport. Journal of Pharmaceutical and Biomedical Analysis, 2012, 67-68, 129-136.	2.8	0
15	Structures of peptide agonists for human protease activated receptor 2. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 916-919.	2.2	2
16	In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses. Antiviral Research, 2009, 84, 234-241.	4.1	95
17	Base-Sensitivity of Arginine Alpha-Ketoamide Inhibitors of Serine Proteases. Australian Journal of Chemistry, 2009, 62, 988.	0.9	1
18	Structure of West Nile Virus NS3 Protease: Ligand Stabilization of the Catalytic Conformation. Journal of Molecular Biology, 2009, 385, 1568-1577.	4.2	131

MARTIN J STOERMER

#	Article	IF	CITATIONS
19	Synthesis and cannabinoid activity of 1-substituted-indole-3-oxadiazole derivatives: Novel agonists for the CB1 receptor. European Journal of Medicinal Chemistry, 2008, 43, 513-539.	5.5	18
20	Synthesis and Cannabinoid Activity of a Variety of 2,3-Substituted 1-Benzo[b]thiophen Derivatives and 2,3-Substituted Benzofuran: Novel Agonists for the CB1 Receptor. Australian Journal of Chemistry, 2008, 61, 484.	0.9	6
21	Potent Cationic Inhibitors of West Nile Virus NS2B/NS3 Protease With Serum Stability, Cell Permeability and Antiviral Activity. Journal of Medicinal Chemistry, 2008, 51, 5714-5721.	6.4	77
22	Mutagenesis of the West Nile virus NS2B cofactor domain reveals two regions essential for protease activity. Journal of General Virology, 2008, 89, 1010-1014.	2.9	52
23	West Nile Virus NS2B/NS3 Protease As An Antiviral Target. Current Medicinal Chemistry, 2008, 15, 2771-2784.	2.4	77
24	Generation and characterization of proteolytically active and highly stable truncated and full-length recombinant West Nile virus NS3. Protein Expression and Purification, 2007, 53, 87-96.	1.3	21
25	Current Status of Virtual Screening as Analysed by Target Class. Medicinal Chemistry, 2006, 2, 89-112.	1.5	28
26	Insights to Substrate Binding and Processing by West Nile Virus NS3 Protease through Combined Modeling, Protease Mutagenesis, and Kinetic Studies. Journal of Biological Chemistry, 2006, 281, 38448-38458.	3.4	78
27	Potencies of Human Immunodeficiency Virus Protease Inhibitors In Vitro against Plasmodium falciparum and In Vivo against Murine Malaria. Antimicrobial Agents and Chemotherapy, 2006, 50, 639-648.	3.2	130
28	Site-directed Mutagenesis and Kinetic Studies of the West Nile Virus NS3 Protease Identify Key Enzyme-Substrate Interactions. Journal of Biological Chemistry, 2005, 280, 2896-2903.	3.4	56
29	Structural Mimicry of Two Cytochromeb562Interhelical Loops Using Macrocycles Constrained by Oxazoles and Thiazoles. Journal of the American Chemical Society, 2005, 127, 6563-6572.	13.7	36
30	Potent Cyclic Antagonists of the Complement C5a Receptor on Human Polymorphonuclear Leukocytes. Relationships between Structures and Activity. Molecular Pharmacology, 2004, 65, 868-879.	2.3	100
31	Enzymatic Characterization and Homology Model of a Catalytically Active Recombinant West Nile Virus NS3 Protease. Journal of Biological Chemistry, 2004, 279, 48535-48542.	3.4	103
32	Cycloadditions of Isobenzofuran to a Constrained Template Bearing Neighboring Dienophiles. Chemistry - A European Journal, 2003, 9, 2068-2071.	3.3	8
33	Regioselective Synthesis of Antiparallel Loops on a Macrocyclic Scaffold Constrained by Oxazoles and Thiazoles. Organic Letters, 2002, 4, 3367-3370.	4.6	26
34	Activity of Recombinant Dengue 2 Virus NS3 Protease in the Presence of a Truncated NS2B Co-factor, Small Peptide Substrates, and Inhibitors. Journal of Biological Chemistry, 2001, 276, 45762-45771.	3.4	276
35	2-(Het)aryl-Substituted 7-Azabicyclo[2.2.1]heptane Systems. , 1998, 1998, 1997-2001.		28
36	Ethyl (E)-3-(2-Methoxyphenyl)-2-butenoate. Molecules, 1998, 3, M71.	3.8	0

MARTIN J STOERMER

#	Article	IF	CITATIONS
37	[(Z)-5-Phenyl-2-penten-2-yl]mercury Bromide. Molecules, 1998, 3, M68.	3.8	1
38	bis-[(Z)-5-Phenyl-2-penten-2-yl]mercury. Molecules, 1998, 3, M70.	3.8	1
39	(Z)-2-Bromo-5-phenyl-2-pentene. Molecules, 1998, 3, M66.	3.8	Ο
40	Tributyl-[(Z)-5-phenyl-2-penten-2-yl]stannane. Molecules, 1998, 3, M67.	3.8	2
41	2(R,S),3(S,R)-2,3-Dibromo-3-methyl-5-phenyl-2-pentanoic Acid. Molecules, 1998, 3, M56.	3.8	1
42	Ethyl (E)-3-methyl-5-phenyl-2-pentenoate. Molecules, 1998, 3, M51.	3.8	1
43	Ethyl (Z)-3-Methyl-5-phenyl-2-pentenoate. Molecules, 1998, 3, M52.	3.8	0
44	(E)-3-Methyl-5-phenyl-2-pentenoic Acid. Molecules, 1998, 3, M53.	3.8	0
45	(Z)-3-Methyl-5-phenyl-2-pentenoic Acid. Molecules, 1998, 3, M54.	3.8	0
46	2(S,R),3(R,S)-2,3-Dibromo-3-methyl-5-phenyl-2-pentanoic Acid. Molecules, 1998, 3, M55.	3.8	2
47	(Z)-1-Bromo-2-methyl-4-phenyl-1-butene. Molecules, 1998, 3, M57.	3.8	0
48	(E)-1-Bromo-2-methyl-4-phenyl-1-butene. Molecules, 1998, 3, M58.	3.8	0
49	Ethyl 3-Hydroxy-3-methyl-5-phenylpentanoate. Molecules, 1998, 3, M59.	3.8	Ο
50	Ethyl 3-Acetoxy-3-methyl-5-phenylpentanoate. Molecules, 1998, 3, M60.	3.8	0
51	3-Hydroxy-3-methyl-5-phenylpentanoic Acid. Molecules, 1998, 3, M61.	3.8	Ο
52	Ethyl (E)-2-Methyl-5-phenyl-2-pentenoate. Molecules, 1998, 3, M62.	3.8	0
53	Ethyl (Z)-2-Methyl-5-phenyl-2-pentenoate. Molecules, 1998, 3, M63.	3.8	0
54	(E)-2-Methyl-5-phenyl-2-pentenoic Acid. Molecules, 1998, 3, M64.	3.8	0

4

MARTIN J STOERMER

#	Article	IF	CITATIONS
55	2,3-Dibromo-2-methyl-5-phenylpentanoic Acid. Molecules, 1998, 3, M65.	3.8	Ο
56	[(Z)-5-Phenyl-2-penten-2-yl]mercury Acetate. Molecules, 1998, 3, M69.	3.8	1
57	Ethyl (Z)-3-(2-Methoxyphenyl)-2-butenoate. Molecules, 1998, 3, M72.	3.8	1
58	(E)-3-(2-Methoxyphenyl)-2-butenoic Acid. Molecules, 1998, 3, M73.	3.8	0
59	Structure-activity relationships for macrocyclic peptidomimetic inhibitors of HIV-1 protease. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 2531-2536.	2.2	17
60	1H NMR evidence for the formation of vinyllead triacetates. The reactions of vinylmercury, vinyltin, and vinylboronic acids with lead tetraacetate. Journal of Organometallic Chemistry, 1996, 507, 207-214.	1.8	7
61	A Selective and Versatile Synthesis of Substituted Chromones via Addition of Phenols to Dimethyl Acetylenedicarboxylate. Australian Journal of Chemistry, 1995, 48, 677.	0.9	11
62	Electrophilic vinylations by vinyllead triacetates and tribenzoates generated by tin–lead exchange. Journal of the Chemical Society Perkin Transactions 1, 1992, , 1911-1915.	0.9	13
63	Flavones are inhibitors of HIV-1 proteinase. Biochemical and Biophysical Research Communications, 1992, 188, 631-637.	2.1	110
64	Vinyl cation formation by decomposition of vinyllead(IV) triacetates. Part 2. Journal of the Chemical Society Perkin Transactions 1, 1991, , 2455.	0.9	12
65	Vinyl cation formation by decomposition of vinyl-lead triacetates. The reactions of vinylmercury and vinyltin compounds with lead tetra-acetate. Journal of the Chemical Society Perkin Transactions 1, 1990, , 2645.	0.9	18