
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/883006/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human face and gaze perception is highly context specific and involves bottom-up and top-down neural processing. Neuroscience and Biobehavioral Reviews, 2022, 132, 304-323.	2.9	16
2	Development of muscle tone impairments in high-risk infants: Associations with cerebral palsy and cystic periventricular leukomalacia. European Journal of Paediatric Neurology, 2022, 37, 12-18.	0.7	5
3	Accelerating progress on early childhood development for children under 5 years with disabilities by 2030. The Lancet Global Health, 2022, 10, e438-e444.	2.9	36
4	Disability in children: a global problem needing a well-coordinated global action. BMJ Paediatrics Open, 2022, 6, e001397.	0.6	8
5	Infant motor behaviour and functional and cognitive outcome at school-age: A follow-up study in very high-risk children. Early Human Development, 2022, 170, 105597.	0.8	0
6	Atypical knee jerk responses in high-risk children: A longitudinal EMG-study. European Journal of Paediatric Neurology, 2022, , .	0.7	2
7	Emerging signs of autism spectrum disorder in infancy: Putative neural substrate. Developmental Medicine and Child Neurology, 2022, 64, 1344-1350.	1.1	18
8	Temporal and spatial localisation of general movement complexity and variation—Why Gestalt assessment requires experience. Acta Paediatrica, International Journal of Paediatrics, 2021, 110, 290-300.	0.7	3
9	Developmental outcomes after early surgery for complex congenital heart disease: a systematic review and metaâ€analysis. Developmental Medicine and Child Neurology, 2021, 63, 29-46.	1.1	61
10	Children with complex congenital heart disease and new metaâ€analyses. Developmental Medicine and Child Neurology, 2021, 63, 117-118.	1.1	1
11	The Coping with and Caring for Infants with Special Needs intervention was associated with improved motor development in preterm infants. Acta Paediatrica, International Journal of Paediatrics, 2021, 110, 1189-1200.	0.7	15
12	Risk factors in early life for developmental coordination disorder: a scoping review. Developmental Medicine and Child Neurology, 2021, 63, 511-519.	1.1	31
13	Patterns of atypical muscle tone in the general infant population - Prevalence and associations with perinatal risk and neurodevelopmental status. Early Human Development, 2021, 152, 105276.	0.8	5
14	The conundrum of a global tool for early childhood development to monitor SDG indicator 4.2.1. The Lancet Global Health, 2021, 9, e586-e587.	2.9	13
15	Early Diagnostics and Early Intervention in Neurodevelopmental Disorders—Age-Dependent Challenges and Opportunities. Journal of Clinical Medicine, 2021, 10, 861.	1.0	66
16	Early Intervention for Children Aged 0 to 2 Years With or at High Risk of Cerebral Palsy. JAMA Pediatrics, 2021, 175, 846.	3.3	147
17	Comorbidities of deformational plagiocephaly in infancy: a scoping review protocol. BMJ Paediatrics Open, 2021, 5, e001113.	0.6	3
18	Setting the record straight on measuring SDG 4.2.1 – Authors' reply. The Lancet Global Health, 2021, 9, e912.	2.9	0

#	Article	IF	CITATIONS
19	Active head lifting from supine in infancy in the general population: Red flag or not?. Early Human Development, 2021, 163, 105466.	0.8	1
20	Interactive media use and early childhood development. Jornal De Pediatria, 2020, 96, 273-275.	0.9	7
21	LEARN2MOVE 0–2 years, a randomized early intervention trial for infants at very high risk of cerebral palsy: neuromotor, cognitive, and behavioral outcome. Disability and Rehabilitation, 2020, 42, 3752-3761.	0.9	28
22	LEARN2MOVE 0–2 years, a randomized early intervention trial for infants at very high risk of cerebral palsy: family outcome and infant's functional outcome. Disability and Rehabilitation, 2020, 42, 3762-3770.	0.9	27
23	Tablet Use in Young Children is Associated with Advanced Fine Motor Skills. Journal of Motor Behavior, 2020, 52, 196-203.	0.5	15
24	Standardized Infant NeuroDevelopmental Assessment developmental and socioâ€emotional scales: reliability and predictive value in an atâ€risk population. Developmental Medicine and Child Neurology, 2020, 62, 845-853.	1.1	10
25	Prevailing head position to one side in early infancy—A populationâ€based study. Acta Paediatrica, International Journal of Paediatrics, 2020, 109, 1423-1429.	0.7	6
26	Caregivers' experiences with the new familyâ€centred paediatric physiotherapy programme COPCA: A qualitative study. Child: Care, Health and Development, 2020, 46, 28-36.	0.8	15
27	The quality of general movements in infants with complex congenital heart disease undergoing surgery in the neonatal period. Early Human Development, 2020, 151, 105167.	0.8	9
28	Interactive media use and early childhood development. Jornal De Pediatria (Versão Em Português), 2020, 96, 273-275.	0.2	1
29	Alberta Infant Motor Scale: Cross-cultural analysis of gross motor development in Dutch and Canadian infants and introduction of Dutch norms. Early Human Development, 2020, 151, 105239.	0.8	15
30	Typical general movements at 2 to 4Âmonths: Movement complexity, fidgety movements, and their associations with risk factors and SINDA scores. Early Human Development, 2020, 149, 105135.	0.8	6
31	Coaching approaches in early intervention and paediatric rehabilitation. Developmental Medicine and Child Neurology, 2020, 62, 569-574.	1.1	38
32	Intra- and Inter-Rater Reliability of the Infant Motor Profile in Infants in Primary Health Care. Physical and Occupational Therapy in Pediatrics, 2020, 40, 571-581.	0.8	5
33	Atypical general movements in the general population: Prevalence over the last 15 years and associated factors. Acta Paediatrica, International Journal of Paediatrics, 2020, 109, 2762-2769.	0.7	5
34	Motor behaviour in infancy is associated with neurological, cognitive, and behavioural function of children born to parents with reduced fertility. Developmental Medicine and Child Neurology, 2020, 62, 1089-1095.	1.1	11
35	General Movement Assessment from videos of computed 3D infant body models is equally effective compared to conventional RGB video rating. Early Human Development, 2020, 144, 104967.	0.8	22
36	Postural control during reaching while sitting and general motor behaviour when learning to walk. Developmental Medicine and Child Neurology, 2019, 61, 555-562.	1.1	3

#	Article	IF	CITATIONS
37	Asthma in 9-year-old children of subfertile couples is not associated with in vitro fertilization procedures. European Journal of Pediatrics, 2019, 178, 1493-1499.	1.3	4
38	Effects of forward tilted seating and foot-support on postural adjustments in children with spastic cerebral palsy: An EMG-study. European Journal of Paediatric Neurology, 2019, 23, 723-732.	0.7	4
39	Cognitive and behavioural outcome of children born after IVF at age 9 years. Human Reproduction, 2019, 34, 2193-2200.	0.4	5
40	Parental subfertility is associated with higher blood pressure in offspring. Acta Paediatrica, International Journal of Paediatrics, 2019, 108, 373-374.	0.7	1
41	In vitro fertilisation was associated with refractive errors when children reached the age of 11. Acta Paediatrica, International Journal of Paediatrics, 2019, 108, 1921-1922.	0.7	1
42	IVF procedures are not, but subfertility is associated with neurological condition of 9-year-old offspring. Early Human Development, 2019, 129, 38-44.	0.8	6
43	Reliability and predictive validity of the Standardized Infant NeuroDevelopmental Assessment neurological scale. Developmental Medicine and Child Neurology, 2019, 61, 654-660.	1.1	22
44	Coaching in early physical therapy intervention: the COPCA program as an example of translation of theory into practice. Disability and Rehabilitation, 2019, 41, 1846-1854.	0.9	30
45	Motor development in infancy is related to cognitive function at 4 years of age. Developmental Medicine and Child Neurology, 2018, 60, 1149-1155.	1.1	37
46	Are postural adjustments during reaching related to walking development in typically developing infants and infants at risk of cerebral palsy?. , 2018, 50, 107-115.		3
47	Changes in the Content of Pediatric Physical Therapy for Infants: A Quantitative, Observational Study. Physical and Occupational Therapy in Pediatrics, 2018, 38, 457-488.	0.8	4
48	Developmental outcome of 9-year-old children born after PGS: follow-up of a randomized trial. Human Reproduction, 2018, 33, 147-155.	0.4	16
49	The tonic response to the infant knee jerk as an early sign of cerebral palsy. Early Human Development, 2018, 119, 38-44.	0.8	5
50	Neural substrate and clinical significance of general movements: an update. Developmental Medicine and Child Neurology, 2018, 60, 39-46.	1.1	83
51	Predictive validity of the General Movements Assessment: type of population versus type of assessment. Developmental Medicine and Child Neurology, 2018, 60, 1186-1186.	1.1	3
52	Development of postural control in infancy in cerebral palsy and cystic periventricular leukomalacia. Research in Developmental Disabilities, 2018, 78, 66-77.	1.2	1
53	Early human brain development: Starring the subplate. Neuroscience and Biobehavioral Reviews, 2018, 92, 276-290.	2.9	64
54	Changes in Therapist Actions During a Novel Pediatric Physical Therapy Program: Successes and Challenges. Pediatric Physical Therapy, 2018, 30, 223-230.	0.3	6

#	Article	IF	CITATIONS
55	Early human motor development: From variation to the ability to vary and adapt. Neuroscience and Biobehavioral Reviews, 2018, 90, 411-427.	2.9	153
56	Predictive value of General Movement Assessment for preterm infants' development at 2 years â^' implementation in clinical routine in a non-academic setting. Research in Developmental Disabilities, 2017, 62, 69-80.	1.2	21
57	Effect of early intervention on functional outcome at school age: Follow-up and process evaluation of a randomised controlled trial in infants at risk. Early Human Development, 2017, 106-107, 67-74.	0.8	9
58	Neurodevelopmental and cardiometabolic outcome in 4-year-old twins and singletons born after IVF. Reproductive BioMedicine Online, 2017, 34, 659-667.	1.1	5
59	Effect of early intervention in infants at very high risk of cerebral palsy: a systematic review. Developmental Medicine and Child Neurology, 2017, 59, 246-258.	1.1	110
60	Cardiovascular health of 9-year-old IVF offspring: no association with ovarian hyperstimulation and the in vitro procedure. Human Reproduction, 2017, 32, 2540-2548.	0.4	23
61	Best seating condition in children with spastic cerebral palsy: One type does not fit all. Research in Developmental Disabilities, 2017, 71, 42-52.	1.2	1
62	Development of the quality of reaching in infants with cerebral palsy: a kinematic study. Developmental Medicine and Child Neurology, 2017, 59, 1164-1173.	1.1	11
63	Psychometric Properties of a Standardized Observation Protocol to Quantify Pediatric Physical Therapy Actions. Pediatric Physical Therapy, 2017, 29, 244-250.	0.3	4
64	Early, Accurate Diagnosis and Early Intervention in Cerebral Palsy. JAMA Pediatrics, 2017, 171, 897.	3.3	898
65	Early intervention: The challenge to find the best approach for infant and family. Australian Occupational Therapy Journal, 2017, 64, E174.	0.6	1
66	Neurological condition assessed with the Hempel examination and cognition and behaviour at 4 years. Early Human Development, 2017, 112, 9-13.	0.8	1
67	Neurobehaviour at term in infants born moderately and late preterm is associated with cognition at 2 years. Developmental Medicine and Child Neurology, 2017, 59, 122-123.	1.1	0
68	Inter- and Intrarater Reliability of the Infant Motor Profile in 3- to 18-Month-Old Infants. Pediatric Physical Therapy, 2016, 28, 217-222.	0.3	11
69	Social and biological determinants of growth and development in underprivileged societies. Jornal De Pediatria, 2016, 92, 217-219.	0.9	4
70	Specific characteristics of abnormal general movements are associated with functional outcome at school age. Early Human Development, 2016, 95, 9-13.	0.8	10
71	Does general movements quality in term infants predict cerebral palsy and milder forms of limited mobility at 6 years?. Developmental Medicine and Child Neurology, 2016, 58, 1310-1316.	1.1	14
72	Subfertility factors rather than assisted conception factors affect cognitive and behavioural development of 4-year-old singletons. Reproductive BioMedicine Online, 2016, 33, 752-762.	1.1	16

#	Article	IF	CITATIONS
73	Motor and cognitive outcome after specific early lesions of the brain – a systematic review. Developmental Medicine and Child Neurology, 2016, 58, 46-52.	1.1	35
74	Prognostic significance of neurological signs in highâ€risk infants – a systematic review. Developmental Medicine and Child Neurology, 2016, 58, 53-60.	1.1	20
75	Inspiring Infancy: interrelations between sensory, motor, and cognitive abilities during typical and atypical development. Developmental Medicine and Child Neurology, 2016, 58, 1-2.	1.1	3
76	Slow pupillary light responses in infants at high risk of cerebral palsy were associated with periventricular leukomalacia and neurological outcome. Acta Paediatrica, International Journal of Paediatrics, 2016, 105, 1493-1501.	0.7	8
77	Neonatal fatty acid status and cardiometabolic health at 9years. Early Human Development, 2016, 100, 55-59.	0.8	0
78	Knee jerk responses in infants at high risk for cerebral palsy: an observational EMG study. Pediatric Research, 2016, 80, 363-370.	1.1	8
79	Social and biological determinants of growth and development in underprivileged societies. Jornal De Pediatria (VersĀ£o Em PortuguĀªs), 2016, 92, 217-219.	0.2	0
80	Predictive value of general movements' quality in low-risk infants for minor neurological dysfunction and behavioural problems at preschool age. Early Human Development, 2016, 94, 19-24.	0.8	12
81	Limitations in the Activity of Mobility at Age 6 Years After Difficult Birth at Term: Prospective Cohort Study. Physical Therapy, 2016, 96, 1225-1233.	1.1	4
82	Infant positioning in daily life may mediate associations between physiotherapy and child development—video-analysis of an early intervention RCT. Research in Developmental Disabilities, 2016, 53-54, 147-157.	1.2	18
83	Effects of inÂvitro fertilization and maternal characteristics on perinatal outcomes: a population-based study using siblings. Fertility and Sterility, 2016, 105, 590-598.e2.	0.5	47
84	Asthma and asthma medication use among 4-year-old offspring of subfertile couples – association with IVF?. Reproductive BioMedicine Online, 2015, 31, 711-714.	1.1	17
85	Adaptive seating systems in children with severe cerebral palsy across International Classification of Functioning, Disability and Health for Children and Youth version domains: a systematic review. Developmental Medicine and Child Neurology, 2015, 57, 919-930.	1.1	47
86	Congenital anomalies in offspring of subfertile couples: a registry-based study in the northern Netherlands. Fertility and Sterility, 2015, 103, 1001-1010.e3.	0.5	33
87	Therapist-Designed Adaptive Riding in Children With Cerebral Palsy: Results of a Feasibility Study. Physical Therapy, 2015, 95, 1151-1162.	1.1	13
88	Development of postural adjustments during reaching in infants at risk for cerebral palsy from 4 to 18Âmonths. Developmental Medicine and Child Neurology, 2015, 57, 668-676.	1.1	9
89	Neonatal fatty acid status and neurodevelopmental outcome at 9years. Early Human Development, 2015, 91, 587-591.	0.8	14
90	Early Diagnosis and Early Intervention in Cerebral Palsy. Frontiers in Neurology, 2014, 5, 185.	1.1	137

#	Article	IF	CITATIONS
91	Is ovarian hyperstimulation associated with higher blood pressure in 4-year-old IVF offspring? Part I: multivariable regression analysis. Human Reproduction, 2014, 29, 502-509.	0.4	35
92	Is ovarian hyperstimulation associated with higher blood pressure in 4-year-old IVF offspring? Part II: an explorative causal inference approach. Human Reproduction, 2014, 29, 510-517.	0.4	19
93	Dysmorphic features and developmental outcome of 2â€yearâ€old children. Developmental Medicine and Child Neurology, 2014, 56, 1078-1084.	1.1	5
94	Computerâ€based analysis of general movements reveals stereotypies predicting cerebral palsy. Developmental Medicine and Child Neurology, 2014, 56, 960-967.	1.1	45
95	Children with behavioral problems and motor problems have a worse neurological condition than children with behavioral problems only. Early Human Development, 2014, 90, 803-807.	0.8	2
96	Increased time to pregnancy is associated with less optimal neurological condition in 4-year-old singletons, in vitro fertilization itself is not. Human Reproduction, 2014, 29, 2773-2786.	0.4	23
97	Postural adjustments in infants at very high risk for cerebral palsy before and after developing the ability to sit independently. Early Human Development, 2014, 90, 435-441.	0.8	10
98	Minor neurological dysfunction and cognition in 9-year-olds born at term. Early Human Development, 2013, 89, 263-270.	0.8	10
99	Reliability and concurrent validity of the <scp>I</scp> nfant <scp>M</scp> otor <scp>P</scp> rofile. Developmental Medicine and Child Neurology, 2013, 55, 539-545.	1.1	29
100	The effect of preimplantation genetic screening on neurological, cognitive and behavioural development in 4-year-old children: follow-up of a RCT. Human Reproduction, 2013, 28, 1508-1518.	0.4	33
101	Movement variation in infants born following IVF/ICSI with and without ovarian hyperstimulation. Early Human Development, 2013, 89, 507-513.	0.8	4
102	Use and functioning of the affected limb in children with unilateral congenital below-elbow deficiency during infancy and preschool age: A longitudinal observational multiple case study. Early Human Development, 2013, 89, 49-54.	0.8	20
103	Typical and atypical development of reaching and postural control in infancy. Developmental Medicine and Child Neurology, 2013, 55, 5-8.	1.1	49
104	Blood pressure and anthropometrics of 4-y-old children born after preimplantation genetic screening: follow-up of a unique, moderately sized, randomized controlled trial. Pediatric Research, 2013, 74, 606-614.	1.1	15
105	Increased time to pregnancy is associated with suboptimal neurological condition of 2-year-olds. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2013, 98, F434-F436.	1.4	7
106	GMFM in Infancy. Pediatric Physical Therapy, 2013, 25, 168-176.	0.3	8
107	Mastery of manual skills: recent insights into typical and atypical development of manual ability. Developmental Medicine and Child Neurology, 2013, 55, iii-iv.	1.1	2
108	Neural correlates of paediatric dysgraphia. Developmental Medicine and Child Neurology, 2013, 55, 65-68.	1.1	21

#	Article	IF	CITATIONS
109	Active head lifting from supine in infancy: a significant stereotypy?. Developmental Medicine and Child Neurology, 2012, 54, 489-490.	1.1	2
110	Kinematic assessment of stereotypy in spontaneous movements in infants. Gait and Posture, 2012, 36, 307-311.	0.6	53
111	Effects of long hain polyunsaturated fatty acid supplementation of infant formula on cognition and behaviour at 9 years of age. Developmental Medicine and Child Neurology, 2012, 54, 1102-1108.	1.1	27
112	Dysmorphic features in 2-year-old IVF/ICSI offspring. Early Human Development, 2012, 88, 823-829.	0.8	10
113	Development of postural adjustments during reaching in typically developing infants from 4 to 18Âmonths. Experimental Brain Research, 2012, 220, 109-119.	0.7	46
114	The Groningen assisted reproductive technologies cohort study: developmental status and behavior at 2Âyears. Fertility and Sterility, 2011, 95, 2283-2289.	0.5	13
115	Morphological Abnormalities in 2-Year-Old Children Born After IVF/ICSI with Preimplantation Genetic Screening (PGS). Pediatric Research, 2011, 70, 407-407.	1.1	Ο
116	Does physiotherapeutic intervention affect motor outcome in high-risk infants? An approach combining a randomized controlled trial and process evaluation. Developmental Medicine and Child Neurology, 2011, 53, e8-e15.	1.1	67
117	Does physiotherapeutic intervention affect motor outcome in high-risk infants? An approach combining a randomized controlled trial and process evaluation. Developmental Medicine and Child Neurology, 2011, 53, 280-280.	1.1	4
118	Minor neurological dysfunction and IQ in 9-year-old children born at term. Developmental Medicine and Child Neurology, 2011, 53, 368-368.	1.1	1
119	Assessment of specific characteristics of abnormal general movements: does it enhance the prediction of cerebral palsy?. Developmental Medicine and Child Neurology, 2011, 53, 751-756.	1.1	46
120	Infant Motor Profile and cerebral palsy: promising associations. Developmental Medicine and Child Neurology, 2011, 53, 40-45.	1.1	33
121	Challenges and limitations in early intervention. Developmental Medicine and Child Neurology, 2011, 53, 52-55.	1.1	42
122	The role of the family in intervention of infants at high risk of cerebral palsy: a systematic analysis. Developmental Medicine and Child Neurology, 2011, 53, 62-67.	1.1	60
123	Limited motor performance and minor neurological dysfunction at school age. Acta Paediatrica, International Journal of Paediatrics, 2011, 100, 271-278.	0.7	28
124	The Groningen LCPUFA Study: No Effect of Short-Term Postnatal Long-Chain Polyunsaturated Fatty Acids in Healthy Term Infants on Cardiovascular and Anthropometric Development at 9 Years. Pediatric Research, 2011, 70, 411-416.	1.1	27
125	Differences Between the Family-Centered "COPCA―Program and Traditional Infant Physical Therapy Based on Neurodevelopmental Treatment Principles. Physical Therapy, 2011, 91, 1303-1322.	1.1	71
126	Pediatric Physical Therapy in Infancy: From Nightmare to Dream? A Two-Arm Randomized Trial. Physical Therapy, 2011, 91, 1323-1338.	1.1	87

#	Article	IF	CITATIONS
127	The Groningen ART cohort study: the effects of ovarian hyperstimulation and the IVF laboratory procedures on neurological condition at 2 years. Human Reproduction, 2011, 26, 703-712.	0.4	23
128	Predictive value of definitely abnormal general movements in the general population. Developmental Medicine and Child Neurology, 2010, 52, 456-461.	1.1	25
129	LEARN 2 MOVE 0-2 years: effects of a new intervention program in infants at very high risk for cerebral palsy; a randomized controlled trial. BMC Pediatrics, 2010, 10, 76.	0.7	46
130	Development of adaptive motor behaviour in typically developing infants. Acta Paediatrica, International Journal of Paediatrics, 2010, 99, 618-624.	0.7	18
131	The assessment of minor neurological dysfunction in infancy using the Touwen Infant Neurological Examination: strengths and limitations. Developmental Medicine and Child Neurology, 2010, 52, 87-92.	1.1	79
132	Construct validity of the Infant Motor Profile: relation with prenatal, perinatal, and neonatal risk factors. Developmental Medicine and Child Neurology, 2010, 52, e209-15.	1.1	29
133	Effect of Long-Chain Polyunsaturated Fatty Acid Supplementation on Neurodevelopmental Outcome in Full-Term Infants. Nutrients, 2010, 2, 790-804.	1.7	18
134	Development of a Quantitative Tool to Assess the Content of Physical Therapy for Infants. Pediatric Physical Therapy, 2010, 22, 189-197.	0.3	18
135	Variation and Variability: Key Words in Human Motor Development. Physical Therapy, 2010, 90, 1823-1837.	1.1	169
136	Ovarian hyperstimulation and the in vitro fertilization procedure do not influence early neuromotor development; a history of subfertility does. Fertility and Sterility, 2010, 93, 544-553.	0.5	27
137	The Groningen ART cohort study: ovarian hyperstimulation and the in vitro procedure do not affect neurological outcome in infancy. Human Reproduction, 2009, 24, 3119-3126.	0.4	31
138	Quality of general movements and psychiatric morbidity at 9 to 12Âyears. Early Human Development, 2009, 85, 1-6.	0.8	59
139	Prevalence of abnormal general movements in three-month-old infants. Early Human Development, 2009, 85, 399-403.	0.8	19
140	The Infant Motor Profile: a standardized and qualitative method to assess motor behaviour in infancy. Developmental Medicine and Child Neurology, 2008, 50, 275-282.	1.1	86
141	Reduced variability in motor behaviour: An indicator of impaired cerebral connectivity?. Early Human Development, 2008, 84, 787-789.	0.8	48
142	Neuromotor, cognitive, language and behavioural outcome in children born following IVF or ICSI-a systematic review. Human Reproduction Update, 2008, 14, 219-231.	5.2	121
143	Prenatal long-chain polyunsaturated fatty acid status: the importance of a balanced intake of docosahexaenoic acid and arachidonic acid. Journal of Perinatal Medicine, 2008, 36, 101-9.	0.6	63
144	How much loss to follow-up is acceptable in long-term randomised trials and prospective studies?. Archives of Disease in Childhood, 2008, 93, 458-461.	1.0	465

#	Article	IF	CITATIONS
145	Fetal Onset of General Movements. Pediatric Research, 2008, 63, 191-195.	1.1	148
146	Evaluation of Neuromotor Function in Infancy–A Systematic Review of Available Methods. Journal of Developmental and Behavioral Pediatrics, 2008, 29, 315-323.	0.6	116
147	Effect of Seat Surface Inclination on Postural Control During Reaching in Preterm Children With Cerebral Palsy. Physical Therapy, 2007, 87, 861-871.	1.1	34
148	Prenatal and early postnatal fatty acid status and neurodevelopmental outcome. Journal of Perinatal Medicine, 2007, 35, S28-S34.	0.6	47
149	Discussion on the clinical relevance of activity-dependent plasticity after an insult to the developing brain. Neuroscience and Biobehavioral Reviews, 2007, 31, 1213-1219.	2.9	4
150	Putative neural substrate of normal and abnormal general movements. Neuroscience and Biobehavioral Reviews, 2007, 31, 1181-1190.	2.9	159
151	Do girls with minor neurological dysfunction mature at a later age?. Acta Paediatrica, International Journal of Paediatrics, 2007, 87, 117-118.	0.7	1
152	Early development of postural adjustments in standing with and without support. Experimental Brain Research, 2007, 178, 439-449.	0.7	14
153	Ontogeny of the human central nervous system: What is happening when?. Early Human Development, 2006, 82, 257-266.	0.8	462
154	Specific postural support promotes variation in motor behaviour of infants with minor neurological dysfunction. Developmental Medicine and Child Neurology, 2006, 48, 966-972.	1.1	1
155	Specific postural support promotes variation in motor behaviour of infants with minor neurological dysfunction. Developmental Medicine and Child Neurology, 2006, 48, 966.	1.1	15
156	General movements in early infancy predict neuromotor development at 9 to 12 years of age. Developmental Medicine and Child Neurology, 2005, 47, 731.	1.1	151
157	A systematic review of the effects of early intervention on motor development. Developmental Medicine and Child Neurology, 2005, 47, 421-432.	1.1	297
158	The neuromotor examination of the preschool child and its prognostic significance. Mental Retardation and Developmental Disabilities Research Reviews, 2005, 11, 180-188.	3.5	48
159	Development of Postural Control During the First 18 Months of Life. Neural Plasticity, 2005, 12, 99-108.	1.0	78
160	Development of postural adjustments in sitting position during the first half year of life. Developmental Medicine and Child Neurology, 2005, 47, 312-320.	1.1	89
161	Kinematic Characteristics of Reaching Movements in Preterm Children with Cerebral Palsy. Pediatric Research, 2005, 57, 883-889.	1.1	76
162	Kinematic Characteristics of Postural Control during Reaching in Preterm Children with Cerebral Palsy. Pediatric Research, 2005, 58, 586-593.	1.1	46

#	Article	IF	CITATIONS
163	General movements in early infancy predict neuromotor development at 9 to 12 years of age. Developmental Medicine and Child Neurology, 2005, 47, 731-738.	1.1	3
164	A systematic review of the effects of early intervention on motor development. Developmental Medicine and Child Neurology, 2005, 47, 421-432.	1.1	12
165	Quality of general movements and the development of minor neurological dysfunction at toddler and school age. Clinical Rehabilitation, 2004, 18, 287-299.	1.0	132
166	Postural adjustments due to external perturbations during sitting in 1-month-old infants: evidence for the innate origin of direction specificity. Experimental Brain Research, 2004, 157, 10-17.	0.7	42
167	General movements: a window for early identification of children at high risk for developmental disorders. Journal of Pediatrics, 2004, 145, S12-S18.	0.9	312
168	Postural control during reaching in preterm children with cerebral palsy. Developmental Medicine and Child Neurology, 2004, 46, 253-266.	1.1	88
169	Development of postural adjustments during reaching in sitting children. Experimental Brain Research, 2003, 151, 32-45.	0.7	72
170	Kinematic Quality of Reaching Movements in Preterm Infants. Pediatric Research, 2003, 53, 836-842.	1.1	77
171	Long-chain polyunsaturated fatty acids have a positive effect on the quality of general movements of healthy term infants. American Journal of Clinical Nutrition, 2003, 78, 313-318.	2.2	91
172	Discussion: Significance and Treatment of Clumsiness in Children. Neural Plasticity, 2003, 10, 165-178.	1.0	3
173	Developmental Coordination Disorder: Is Clumsy Motor Behavior Caused by a Lesion of the Brain at Early Age?. Neural Plasticity, 2003, 10, 39-50.	1.0	66
174	Two distinct forms of minor neurological dysfunction: perspectives emerging from a review of data of the Groningen Perinatal Project. Developmental Medicine and Child Neurology, 2002, 44, 561-71.	1.1	56
175	Two distinct forms of minor neurological dysfunction: perspectives emerging from a review of data of the Groningen Perinatal Project. Developmental Medicine and Child Neurology, 2002, 44, 561-571.	1.1	161
176	Early Brain Damage and the Development of Motor Behavior in Children: Clues for Therapeutic Intervention?. Neural Plasticity, 2001, 8, 31-49.	1.0	70
177	Discussion on Possibilities for Therapeutic Intervention in Children and Adults with Motor Disorders. Neural Plasticity, 2001, 8, 141-155.	1.0	1
178	Are Moderate Degrees of Hyperbilirubinemia in Healthy Term Neonates Really Safe for the Brain?. Pediatric Research, 2001, 50, 701-705.	1.1	116
179	Influence of two different sitting positions on postural adjustments in children with spastic diplegia. Developmental Medicine and Child Neurology, 2001, 43, 534-546.	1.1	3
180	Evaluation of motor function in young infants by means of the assessment of general movements: a review. Pediatric Physical Therapy, 2001, 13, 27-36.	0.3	7

#	Article	IF	CITATIONS
181	The Neuronal Group Selection Theory: a framework to explain variation in normal motor development. Developmental Medicine and Child Neurology, 2000, 42, 566-572.	1.1	172
182	The neuronal group selection theory: promising principles for understanding and treating developmental motor disorders. Developmental Medicine and Child Neurology, 2000, 42, 707-715.	1.1	133
183	Goal directed reaching and postural control in supine position in healthy infants. Behavioural Brain Research, 2000, 115, 9-18.	1.2	80
184	The neuronal group selection theory: promising principles for understanding and treating developmental motor disorders. Developmental Medicine and Child Neurology, 2000, 42, 707-715.	1.1	5
185	The Neuronal Group Selection Theory: a framework to explain variation in normal motor development. Developmental Medicine and Child Neurology, 2000, 42, 566-572.	1.1	5
186	Development of postural adjustments during reaching in infants with CP. Developmental Medicine and Child Neurology, 1999, 41, 766-776.	1.1	81
187	Periventricular leucomalacia and preterm birth have different detrimental effects on postural adjustments. Brain, 1999, 122, 727-740.	3.7	63
188	The development of postural adjustments during reaching in 6- to 18-month-old infants. Experimental Brain Research, 1999, 126, 517-528.	0.7	93
189	Postural adjustments during spontaneous and goal-directed arm movements in the first half year of life. Behavioural Brain Research, 1999, 106, 75-90.	1.2	72
190	Development of postural adjustments during reaching in infants with CP. Developmental Medicine and Child Neurology, 1999, 41, 766-776.	1.1	3
191	Quality of general movements in infancy is related to neurological dysfunction, ADHD, and aggressive behaviour. Developmental Medicine and Child Neurology, 1999, 41, 381-391.	1.1	5
192	Development of Postural Adjustments During Reaching in Preterm Infants. Pediatric Research, 1999, 46, 1-7.	1.1	50
193	Development of macronutrient composition of very preterm human milk. British Journal of Nutrition, 1998, 80, 35-40.	1.2	22
194	Ontogeny of postural adjustments during sitting in infancy: variation, selection and modulation Journal of Physiology, 1996, 493, 273-288.	1.3	137
195	Training affects the development of postural adjustments in sitting infants Journal of Physiology, 1996, 493, 289-298.	1.3	85
196	The assessment of General Movements is a valuable technique for the detection of brain dysfunction in young infants. A review. Acta Paediatrica, International Journal of Paediatrics, 1996, 85, 39-43.	0.7	30
197	POSTURAL CONTROL IN CHILDREN WITH SPASTIC DIPLEGIA: MUSCLE ACTIVITY DURING PERTURBATIONS IN SITTING. Developmental Medicine and Child Neurology, 1996, 38, 379-388.	1.1	68
198	Minor Neurological Dysfunction Is More Closely Related to Learning Difficulties than to Behavioral Problems. Journal of Learning Disabilities, 1992, 25, 649-657.	1.5	31

#	Article	IF	CITATIONS
199	Developmental course of general movements in early infancy. I. Descriptive analysis of change in form. Early Human Development, 1992, 28, 201-213.	0.8	115
200	Developmental course of general movements in early infancy. II. EMG correlates. Early Human Development, 1992, 28, 231-251.	0.8	89
201	Minor neurological dysfunction and behavioural development. A report from the Groningen Perinatal Project. Early Human Development, 1985, 11, 221-229.	0.8	28
202	The Infant Motor Profile. , 0, , .		7
203	A comparison of statistical methods for age-specific reference values of discrete scales. Communications in Statistics Part B: Simulation and Computation, 0, , 1-18.	0.6	1
204	Motor development in infants with complex congenital heart disease: A longitudinal study. Developmental Medicine and Child Neurology, 0, , .	1.1	2