Núria F Montcada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8829986/publications.pdf

Version: 2024-02-01

18	657	14	18
papers	citations	h-index	g-index
19	19	19	1635
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Photovoltage/photocurrent transient techniques. , 2020, , 161-180.		9
2	Energy alignment and recombination in perovskite solar cells: weighted influence on the open circuit voltage. Energy and Environmental Science, 2019, 12, 1309-1316.	30.8	106
3	Photo-induced dynamic processes in perovskite solar cells: the influence of perovskite composition in the charge extraction and the carrier recombination. Nanoscale, 2018, 10, 6155-6158.	5.6	24
4	Fully Solutionâ€Processed n–i–pâ€Like Perovskite Solar Cells with Planar Junction: How the Charge Extracting Layer Determines the Openâ€Circuit Voltage. Advanced Materials, 2017, 29, 1604493.	21.0	50
5	Pyrrolo[3,2â€ <i>b</i>)pyrrole as the Central Core of the Electron Donor for Solutionâ€Processed Organic Solar Cells. ChemPlusChem, 2017, 82, 1096-1104.	2.8	32
6	Selective Organic Contacts for Methyl Ammonium Lead Iodide (MAPI) Perovskite Solar Cells: Influence of Layer Thickness on Carriers Extraction and Carriers Lifetime. ACS Applied Materials & Description of Layer Thickness, 2017, 9, 21599-21605.	8.0	22
7	Cyclopentadithiophene organic core in small molecule organic solar cells: morphological control of carrier recombination. Physical Chemistry Chemical Physics, 2017, 19, 3640-3648.	2.8	8
8	Analysis of Photoinduced Carrier Recombination Kinetics in Flat and Mesoporous Lead Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 182-187.	17.4	35
9	Supramolecular biosensors based on electropolymerised pyrrole–cyclodextrin modified surfaces for antibody detection. Analyst, The, 2016, 141, 3274-3279.	3.5	25
10	High photo-current in solution processed organic solar cells based on a porphyrin core A-Ï€-D-Ï€-A as electron donor material. Organic Electronics, 2016, 38, 330-336.	2.6	13
11	Low Open-Circuit Voltage Loss in Solution-Processed Small-Molecule Organic Solar Cells. ACS Energy Letters, 2016, 1, 302-308.	17.4	59
12	Indoline as electron donor unit in "Push–Pull―organic small molecules for solution processed organic solar cells: Effect of the molecular π-bridge on device efficiency. Organic Electronics, 2015, 20, 15-23.	2.6	15
13	Diarylamino-substituted tetraarylethene (TAE) as an efficient and robust hole transport material for 11% methyl ammonium lead iodide perovskite solar cells. Chemical Communications, 2015, 51, 13980-13982.	4.1	61
14	High photocurrent in oligo-thienylenevinylene-based small molecule solar cells with 4.9% solar-to-electrical energy conversion. Journal of Materials Chemistry A, 2015, 3, 11340-11348.	10.3	15
15	Unambiguous determination of molecular packing in crystalline donor domains of small molecule solution processed solar cell devices using routine X-ray diffraction techniques. Journal of Materials Chemistry A, 2014, 2, 3536.	10.3	29
16	Charge carrier transport and contact selectivity limit the operation of PTB7-based organic solar cells of varying active layer thickness. Journal of Materials Chemistry A, 2013, 1, 12345.	10.3	87
17	High open circuit voltage in efficient thiophene-based small molecule solution processed organic solar cells. Organic Electronics, 2013, 14, 2826-2832.	2.6	33
18	Novel ZnO nanostructured electrodes for higher power conversion efficiencies in polymeric solar cells. Physical Chemistry Chemical Physics, 2011, 13, 20871.	2.8	32