Zong-Xiang Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8829981/publications.pdf

Version: 2024-02-01

		94433	133252
127	4,298	37	59
papers	citations	h-index	g-index
100	100	100	FJCF
155	155	133	5765
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synergies of Electrochemical Metallization and Valance Change in Allâ€Inorganic Perovskite Quantum Dots for Resistive Switching. Advanced Materials, 2018, 30, e1800327.	21.0	246
2	Arrays of ZnO/Zn _{<i>x</i>} Cd _{1–<i>x</i>} Se Nanocables: Band Gap Engineering and Photovoltaic Applications. Nano Letters, 2011, 11, 4138-4143.	9.1	185
3	Construction of NiCo-Layered Double Hydroxide Microspheres from Ni-MOFs for High-Performance Asymmetric Supercapacitors. ACS Applied Energy Materials, 2020, 3, 6633-6643.	5.1	167
4	Fingertip‣kinâ€Inspired Highly Sensitive and Multifunctional Sensor with Hierarchically Structured Conductive Graphite/Polydimethylsiloxane Foams. Advanced Functional Materials, 2019, 29, 1808829.	14.9	157
5	Mimicking Neuroplasticity in a Hybrid Biopolymer Transistor by Dual Modes Modulation. Advanced Functional Materials, 2019, 29, 1902374.	14.9	149
6	Microcontact Printing of Ultrahigh Density Gold Nanoparticle Monolayer for Flexible Flash Memories. Advanced Materials, 2012, 24, 3556-3561.	21.0	141
7	A facile molecularly engineered copper (II) phthalocyanine as hole transport material for planar perovskite solar cells with enhanced performance and stability. Nano Energy, 2017, 31, 322-330.	16.0	117
8	Nanocomposite field effect transistors based on zinc oxide/polymer blends. Applied Physics Letters, 2007, 90, 223509.	3.3	87
9	Porous nickel oxide microsphere and Ti3C2Tx hybrid derived from metal-organic framework for battery-type supercapacitor electrode and non-enzymatic H2O2 sensor. Electrochimica Acta, 2019, 322, 134771.	5.2	87
10	A Highâ€Performance Organic Fieldâ€Effect Transistor Based on Platinum(II) Porphyrin: Peripheral Substituents on Porphyrin Ligand Significantly Affect Film Structure and Charge Mobility. Chemistry - an Asian Journal, 2008, 3, 1092-1103.	3.3	86
11	Dopantâ€Free Hole Transporting Materials for Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800200.	5.8	86
12	Highâ€Performance and Stable Perovskite Solar Cells Based on Dopantâ€Free Arylamineâ€Substituted Copper(II) Phthalocyanine Holeâ€Transporting Materials. Advanced Energy Materials, 2019, 9, 1901019.	19.5	80
13	Nanoparticle size dependent threshold voltage shifts in organic memory transistors. Journal of Materials Chemistry, 2011, 21, 14575.	6.7	79
14	Modified graphene oxide/Nafion composite humidity sensor and its linear response to the relative humidity. Sensors and Actuators B: Chemical, 2018, 257, 372-381.	7.8	75
15	Biological Spiking Synapse Constructed from Solution Processed Bimetal Core–Shell Nanoparticle Based Composites. Small, 2018, 14, e1800288.	10.0	68
16	Improving efficiency of organic photovoltaic cells with pentacene-doped CuPc layer. Applied Physics Letters, 2007, 91, .	3.3	62
17	Highly Phosphorescent Planar Chirality by Bridging Two Square-Planar Platinum(II) Complexes: Chirality Induction and Circularly Polarized Luminescence. Journal of the American Chemical Society, 2022, 144, 2233-2244.	13.7	55
18	Method for measurement of the density of thin films of small organic molecules. Review of Scientific Instruments, 2007, 78, 034104.	1.3	54

#	Article	IF	CITATIONS
19	Low voltage flexible nonvolatile memory with gold nanoparticles embedded in poly(methyl) Tj ETQq1 1 0.784314	rgBT /Ove	rlock 10 Tf
20	Introduction of Graphene Oxide as Buffer Layer in Perovskite Solar Cells and the Promotion of Soluble n-Butyl-substituted Copper Phthalocyanine as Efficient Hole Transporting Material. Electrochimica Acta, 2017, 233, 36-43.	5.2	52
21	Dopant-free hole transport materials based on alkyl-substituted indacenodithiophene for planar perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 4706-4713.	5.5	52
22	Functionalized Arylacetylene Oligomers for Organic Thin-Film Transistors (OTFTs). Advanced Materials, 2005, 17, 1258-1261.	21.0	51
23	Ultrasound-Induced Organogel Formation Followed by Thin Film Fabrication via Simple Doctor Blading Technique for Field-Effect Transistor Applications. ACS Applied Materials & Interfaces, 2016, 8, 18991-18997.	8.0	50
24	Tetra methyl substituted Cu(II) phthalocyanine as alternative hole transporting material for organometal halide perovskite solar cells. Applied Surface Science, 2016, 360, 767-771.	6.1	50
25	Non-peripheral octamethyl-substituted copper (II) phthalocyanine nanorods with MXene sheets: An excellent electrode material for symmetric supercapacitor with enhanced electrochemical performance. Journal of Power Sources, 2020, 471, 228472.	7.8	50
26	Bulk heterojunction photovoltaic cells based on tetra-methyl substituted copper(ii) phthalocyanine : P3HT : PCBM composite. Chemical Communications, 2011, 47, 9654.	4.1	49
27	Efficient degradation of organic dye using Ni-MOF derived NiCo-LDH as peroxymonosulfate activator. Chemosphere, 2021, 271, 128509.	8.2	49
28	P3HT/Phthalocyanine Nanocomposites as Efficient Holeâ€Transporting Materials for Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800264.	5.8	47
29	Tetra-alkyl-substituted copper (II) phthalocyanines as dopant-free hole-transport layers for planar perovskite solar cells with enhanced open circuit voltage and stability. Dyes and Pigments, 2017, 139, 619-626.	3.7	46
30	Octamethyl-substituted Pd(<scp>ii</scp>) phthalocyanine with long carrier lifetime as a dopant-free hole selective material for performance enhancement of perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 24416-24424.	10.3	45
31	Organic Memristor Utilizing Copper Phthalocyanine Nanowires with Infrared Response and Cation Regulating Properties. Advanced Electronic Materials, 2019, 5, 1800793.	5.1	44
32	Dopantâ€Free Holeâ€Transport Materials Based on Methoxytriphenylamineâ€Substituted Indacenodithienothiophene for Solutionâ€Processed Perovskite Solar Cells. ChemSusChem, 2017, 10, 2833-2838.	6.8	43
33	Tetraâ€Propyl‣ubstituted Copper (II) Phthalocyanine as Dopantâ€Free Hole Transporting Material for Planar Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800050.	5.8	43
34	Controlled Ambipolar Charge Transport Through a Selfâ€Assembled Gold Nanoparticle Monolayer. Advanced Materials, 2012, 24, 1247-1251.	21.0	42
35	Synthesis of N-CuMe2Pc nanorods/graphene oxide nanocomposite for symmetric supercapacitor electrode with excellent cyclic stability. Electrochimica Acta, 2019, 298, 770-777.	5.2	41
36	Soluble butyl substituted copper phthalocyanine as alternative hole-transporting material for solution processed perovskite solar cells. Electrochimica Acta, 2016, 212, 929-933.	5.2	40

#	Article	IF	CITATIONS
37	Improvement of the photovoltaic parameters of perovskite solar cells using a reduced-graphene-oxide-modified titania layer and soluble copper phthalocyanine as a hole transporter. Physical Chemistry Chemical Physics, 2018, 20, 2388-2395.	2.8	40
38	2D siloxene sheets: A novel electrochemical sensor for selective dopamine detection. Applied Materials Today, 2020, 18, 100477.	4.3	40
39	Dual Defectâ€Passivation Using Phthalocyanine for Enhanced Efficiency and Stability of Perovskite Solar Cells. Small, 2021, 17, e2005216.	10.0	40
40	TiO ₂ based sensor with butterfly wing configurations for fast acetone detection at room temperature. Journal of Materials Chemistry C, 2019, 7, 11118-11125.	5.5	38
41	Functional high-k nanocomposite dielectrics for flexible transistors and inverters with excellent mechanical properties. Journal of Materials Chemistry, 2012, 22, 14246.	6.7	37
42	The strain and thermal induced tunable charging phenomenon in low power flexible memory arrays with a gold nanoparticle monolayer. Nanoscale, 2013, 5, 1972.	5.6	37
43	A random copolymer approach to develop nonfullerene acceptors for all-polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 2106-2110.	5.5	35
44	Enhanced lifetime of organic light-emitting diodes using soluble tetraalkyl-substituted copper phthalocyanines as anode buffer layers. Journal of Materials Chemistry C, 2016, 4, 7377-7382.	5.5	33
45	Highâ€Performance Organic Solar Cells Based on a Nonâ€Fullerene Acceptor with a Spiro Core. Chemistry - an Asian Journal, 2017, 12, 721-725.	3.3	33
46	Toward Real Setting Applications of Organic and Perovskite Solar Cells: A Comparative Review. Energy Technology, 2021, 9, 2000901.	3.8	33
47	Polymer–nanoparticle hybrid dielectrics for flexible transistors and inverters. Journal of Materials Chemistry, 2012, 22, 4060.	6.7	32
48	Design of three-component randomly incorporated copolymers as non-fullerene acceptors for all-polymer solar cells. Polymer Chemistry, 2016, 7, 2230-2238.	3.9	32
49	Controllable threshold voltage shifts of polymer transistors and inverters by utilizing gold nanoparticles. Applied Physics Letters, 2012, 101, 033306.	3.3	31
50	Axially Chiral Bis-Cycloplatinated Binaphthalenes and Octahydro-Binaphthalenes for Efficient Circularly Polarized Phosphorescence in Solution-Processed Organic Light-Emitting Diodes. Inorganic Chemistry, 2021, 60, 13557-13566.	4.0	30
51	Synergy Effect of a Ï€â€Conjugated Ionic Compound: Dual Interfacial Energy Level Regulation and Passivation to Promote <i>V</i> _{oc} and Stability of Planar Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	30
52	Non-peripheral octamethyl-substituted cobalt phthalocyanine nanorods supported on N-doped reduced graphene oxide achieve efficient electrocatalytic CO2 reduction to CO. Chemical Engineering Journal, 2022, 430, 133050.	12.7	29
53	Catalytic synthesis of carbon nanotubes and carbon spheres using Kaolin supported catalyst. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 123, 102-106.	3.5	28
54	Controlled Selfâ€Assembly of Functional Metal Octaethylporphyrin 1 D Nanowires by Solutionâ€Phase Precipitative Method. Chemistry - an Asian Journal, 2008, 3, 1968-1978.	3.3	28

#	Article	IF	CITATIONS
55	Deep-red to near-infrared electrophosphorescence based on bis(8-hydroxyquinolato) platinum(II) complexes. Applied Physics Letters, 2008, 92, 163305.	3.3	28
56	Bis(5,7â€dimethylâ€8â€hydroxyquinolinato)platinum(II) Complex for Efficient Organic Heterojunction Solar Cells. Chemistry - an Asian Journal, 2011, 6, 3223-3229.	3.3	28
57	Siloxene: An advanced metal-free catalyst for efficient photocatalytic reduction of aqueous Cr(VI) under visible light. Chemical Engineering Journal, 2021, 421, 129728.	12.7	28
58	Reformation of thiophene-functionalized phthalocyanine isomers for defect passivation to achieve stable and efficient perovskite solar cells. Journal of Energy Chemistry, 2022, 67, 263-275.	12.9	28
59	Organic field-effect transistors fabricated with N,N′-substituted dialkyl-1,3,8,10-tetramethylquinacridone compounds. Applied Physics Letters, 2009, 95, 123305.	3.3	25
60	Importance of molecular alignment for organic photovoltaic devices. Applied Physics Letters, 2010, 97, 163301.	3.3	24
61	Poly(3-hexylthiophene) Nanotubes with Tunable Aspect Ratios and Charge Transport Properties. ACS Applied Materials & Interfaces, 2014, 6, 11874-11881.	8.0	22
62	Molecular Design Strategy in Developing Titanyl Phthalocyanines as Dopant-Free Hole-Transporting Materials for Perovskite Solar Cells: Peripheral or Nonperipheral Substituents?. ACS Applied Materials & Interfaces, 2019, 11, 36535-36543.	8.0	22
63	A UV damage-sensing nociceptive device for bionic applications. Nanoscale, 2020, 12, 1484-1494.	5.6	22
64	Fabrication of copper phthalocyanine/reduced graphene oxide nanocomposites for efficient photocatalytic reduction of hexavalent chromium. Chemosphere, 2021, 263, 128250.	8.2	22
65	Low temperature processed bilayer dielectrics for low-voltage flexible saturated load inverters. Applied Physics Letters, 2011, 98, .	3.3	21
66	The beneficial effects of mixing spiro-OMeTAD with n-butyl-substituted copper phthalocyanine for perovskite solar cells. Electrochimica Acta, 2016, 222, 1417-1423.	5.2	21
67	Facile synthesis of a dopant-free hole transporting material with a phenothiazine core for planar perovskite solar cells. RSC Advances, 2017, 7, 53604-53610.	3.6	21
68	Molecularly Designed Zinc (II) Phthalocyanine Derivative as Dopantâ€Free Holeâ€Transporting Material of Planar Perovskite Solar Cell with Preferential Faceâ€on Orientation. Solar Rrl, 2019, 3, 1900182.	5.8	21
69	Effect of fluorination on n-type conjugated polymers for all-polymer solar cells. RSC Advances, 2017, 7, 17076-17084.	3.6	20
70	Three dimensional multi-arm acceptors based on diketopyrrolopyrrole with (hetero)aromatic cores for non-fullerene organic solar cells without additional treatment. Dyes and Pigments, 2017, 139, 412-419.	3.7	19
71	A study of different central metals in octamethyl-substituted phthalocyanines as dopant-free hole-transport layers for planar perovskite solar cells. Organic Electronics, 2018, 56, 276-283.	2.6	19
72	Carbon-chain length substituent effects on Cu(II) phthalocyanines as dopant-free hole-transport materials for perovskite solar cells. Solar Energy, 2019, 184, 649-656.	6.1	19

#	Article	IF	CITATIONS
73	Naphthalene tetracarboxylic diimide (NDI)-based polymer solar cells processed by non-halogenated solvents. Organic Electronics, 2017, 46, 203-210.	2.6	18
74	Green solvent processed tetramethyl-substituted aluminum phthalocyanine thin films as anode buffer layers in organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 11471-11478.	5.5	18
75	Room-Temperature Phosphorescence of Pure Axially Chiral Bicarbazoles. Journal of Physical Chemistry Letters, 2022, 13, 5838-5844.	4.6	18
76	Tetra-methyl substituted copper (II) phthalocyanine as a hole injection enhancer in organic light-emitting diodes. AIP Advances, 2015, 5, 107205.	1.3	17
77	Polypyridyl chromium(<scp>iii</scp>) complexes for non-volatile memory application: impact of the coordination sphere on memory device performance. Journal of Materials Chemistry C, 2018, 6, 1445-1450.	5.5	17
78	P3HT with Zn(C ₆ F ₅) ₂ as pâ€Type Dopant for the Enhanced Performance of Planar Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900340.	5.8	16
79	Tetrapropyl-substituted palladium phthalocyanine used as an efficient hole transport material in perovskite solar cells. Organic Electronics, 2021, 88, 106018.	2.6	16
80	Structure–charge transport relationship of 5,15-dialkylated porphyrins. Chemical Communications, 2012, 48, 5139.	4.1	14
81	Self-aligned, full solution process polymer field-effect transistor on flexible substrates. Scientific Reports, 2015, 5, 15770.	3.3	14
82	Enhanced self-assembled monolayer treatment on polymeric gate dielectrics with ultraviolet/ozone assistance in organic thin film transistors. RSC Advances, 2015, 5, 64471-64477.	3.6	14
83	Broadband second harmonic generation from ZnO nano-tetrapods. Chemical Physics Letters, 2011, 506, 226-229.	2.6	13
84	Solution-processed near-infrared phototransistor based on ultrathin nanocrystals of octamethyl substituted zinc(II) phthalocyanine. Organic Electronics, 2018, 58, 197-201.	2.6	13
85	Perovskite Solar Cells: High-Performance and Stable Perovskite Solar Cells Based on Dopant-Free Arylamine-Substituted Copper(II) Phthalocyanine Hole-Transporting Materials (Adv. Energy Mater.) Tj ETQq1 1	0.781493184 r	gBTI\$Overloc
86	Highly Efficient Large-Area Flexible Perovskite Solar Cells Containing Tin Oxide Vertical Nanopillars without Oxygen Vacancies. ACS Applied Energy Materials, 2022, 5, 3568-3577.	5.1	13
87	Interface Engineering via Photopolymerization-Induced Phase Separation for Flexible UV-Responsive Phototransistors. ACS Applied Materials & Interfaces, 2018, 10, 7487-7496.	8.0	12
88	Ultrasonicâ€Assisted Wet Chemistry Synthesis of Ultrafine SnO ₂ Nanoparticles for the Electronâ€Transport Layer in Perovskite Solar Cells. ChemSusChem, 2018, 11, 3000-3006.	6.8	12
89	Dopantâ€Free Holeâ€Transporting Layer Based on Isomerâ€Pure Tetraâ€Butylâ€Substituted Zinc(II) Phthalocyanine for Planar Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900119.	5.8	12
90	Ferroelectric coupling for dual-mode non-filamentary memristors. Applied Physics Reviews, 2022, 9, .	11.3	12

#	Article	IF	CITATIONS
91	Field-effect transistor fabricated with nickel(II) etioporphyrin-I micrometer-sized crystals. Applied Physics Letters, 2008, 93, 223305.	3.3	11
92	Star-configured carbazole as an efficient near-ultraviolet emitter and hole-transporting material for organic light-emitting devices. Applied Physics Letters, 2008, 92, .	3.3	11
93	Improving the performance of polymer solar cells by adjusting the crystallinity and nanoscale phase separation. Chinese Physics B, 2012, 21, 078401.	1.4	11
94	Impact of Fluorine Atoms on Perylene Diimide Derivative for Fullereneâ€Free Organic Photovoltaics. Chemistry - an Asian Journal, 2017, 12, 2052-2056.	3.3	11
95	Fabrication of octamethyl substituted zinc(II) phthalocyanine nanostructure via exfoliation and use for solution-processed field-effect transistor. Organic Electronics, 2018, 55, 15-20.	2.6	10
96	Poly(3â€hexylthiophene)/Gold Nanorod Composites as Efficient Holeâ€Transporting Materials for Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000109.	5.8	10
97	Boosting the Capacitive Performance of Cobalt(<scp>II</scp>) Phthalocyanine by Nonâ€peripheral Octamethyl Substitution for Supercapacitors ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1265-1272.	4.9	10
98	Soluble hexamethyl-substituted subphthalocyanine as a dopant-free hole transport material for planar perovskite solar cells. Royal Society Open Science, 2018, 5, 180617.	2.4	9
99	Hole transport layers based on metal Schiff base complexes in perovskite solar cells. Synthetic Metals, 2020, 259, 116248.	3.9	9
100	Metal–Insulator–Metal Transistors. Advanced Materials, 2008, 20, 2120-2124.	21.0	8
101	Diketopyrrolopyrrole-based acceptors with multi-arms for organic solar cells. RSC Advances, 2018, 8, 25031-25039.	3.6	8
102	Graphene oxide/N-CuMe2Pc nanorod hybrid nanocomposite as efficient visible light photocatalyst for aqueous Cr(VI) reduction. Catalysis Today, 2019, 335, 180-186.	4.4	8
103	Syntheses and photophysical properties of axially chiral thiazolothiazoles: Multi-stimuli-responsive fluorescence and circularly polarized luminescence. Dyes and Pigments, 2022, 197, 109906.	3.7	8
104	<i>In situ</i> synthesis of N–CoMe2Pc/rGO nanocomposite with enhanced photocatalytic activity and stability in Cr(VI) reduction. Journal of Chemical Physics, 2020, 152, 154702.	3.0	7
105	Organic photovoltaic cells with copper (II) tetra-methyl substituted phthalocyanine. Chinese Physics B, 2013, 22, 128505.	1.4	6
106	Mobility Enhancement of P3HTâ€Based OTFTs upon Blending with Au Nanorods. Particle and Particle Systems Characterization, 2015, 32, 1051-1057.	2.3	6
107	Organometal halide perovskite as hole injection enhancer in organic light-emitting diode. Organic Electronics, 2017, 51, 257-263.	2.6	6
108	Asymmetric aggregation-induced emission materials with double stable configurations toward promoted performance in non-doped organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 16858-16869.	5.5	6

#	Article	IF	CITATIONS
109	Tetra-Propyl-Substituted Copper (II) Phthalocyanine as Dopant-Free Hole Transporting Material for Planar Perovskite Solar Cells (Solar RRL 7â^•2018). Solar Rrl, 2018, 2, 1870186.	5.8	4
110	Structural and chromotropism properties of copper(II) complexes with 3,3′-((pyridin-2-ylmethyl)azanediyl)dipropanamide ligand. Transition Metal Chemistry, 2019, 44, 671-680.	1.4	4
111	Poly(3â€hexylthiophene)/Gold Nanorod Composites as Efficient Holeâ€Transporting Materials for Perovskite Solar Cells. Solar Rrl, 2020, 4, 2070066.	5.8	4
112	Synergy Effect of a Ï€â€Conjugated Ionic Compound: Dual Interfacial Energy Level Regulation and Passivation to Promote V oc and Stability of Planar Perovskite Solar Cells. Angewandte Chemie, 0, , .	2.0	4
113	Charge transport in monolayer poly(3-hexylthiophene) thin-film transistors. Chinese Physics B, 2014, 23, 048501.	1.4	3
114	Memory Devices: Synergies of Electrochemical Metallization and Valance Change in Allâ€Inorganic Perovskite Quantum Dots for Resistive Switching (Adv. Mater. 28/2018). Advanced Materials, 2018, 30, 1870207.	21.0	3
115	Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells*. Chinese Physics B, 2021, 30, 108801.	1.4	3
116	Importance of alkyl chain-length on the self-assembly of new Ni(qdt)2 complexes and charge transport properties. RSC Advances, 2013, 3, 12075.	3.6	2
117	Synthesis and characterization of a new series of nickel dithiolate compounds containing both acridinium cations and halogen anions. Inorganica Chimica Acta, 2014, 410, 88-93.	2.4	2
118	Self-assembled nanostructures of linear arylacetylenes and their aza-substituted analogues. AIP Advances, 2016, 6, 065210.	1.3	2
119	All-polymer solar cells performance enhanced via side-chain engineering of the polymer acceptor. Journal of Materials Science: Materials in Electronics, 2017, 28, 5407-5414.	2.2	1
120	Molecularly Designed Zinc (II) Phthalocyanine Derivative as Dopantâ€Free Holeâ€Transporting Material of Planar Perovskite Solar Cell with Preferential Faceâ€on Orientation. Solar Rrl, 2019, 3, 1970113.	5.8	1
121	Resistive Switching: Organic Memristor Utilizing Copper Phthalocyanine Nanowires with Infrared Response and Cation Regulating Properties (Adv. Electron. Mater. 4/2019). Advanced Electronic Materials, 2019, 5, 1970021.	5.1	1
122	Construction of MoS2 intercalated Siloxene heterostructure for all-solid-state symmetric supercapacitors. Applied Materials Today, 2022, 29, 101578.	4.3	1
123	Nanocomposite Field Effect Transistors based on Zinc oxide/polymer blends. , 2007, , .		0
124	Microcontact Printing: Microcontact Printing of Ultrahigh Density Gold Nanoparticle Monolayer for Flexible Flash Memories (Adv. Mater. 26/2012). Advanced Materials, 2012, 24, 3555-3555.	21.0	0
125	Photonic Synapse: Mimicking Neuroplasticity in a Hybrid Biopolymer Transistor by Dual Modes Modulation (Adv. Funct. Mater. 31/2019). Advanced Functional Materials, 2019, 29, 1970212.	14.9	0
126	Novel Two-Dimensional Siloxene Material for Electrochemical Energy Storage and Sensor		0

Applications., 0, , .

#	Article	IF	CITATIONS
127	Rücktitelbild: Synergy Effect of a Ï€â€Conjugated Ionic Compound: Dual Interfacial Energy Level Regulation and Passivation to Promote <i>V</i> _{oc} and Stability of Planar Perovskite Solar Cells (Angew. Chem. 11/2022). Angewandte Chemie, 2022, 134, .	2.0	0