
## Hanno C Erythropel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8829497/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Emerging ENDS products and challenges in tobacco control toxicity research. Tobacco Control, 2024, 33, 110-115.                                                                                                       | 1.8 | 2         |
| 2  | Synthetic Cooling Agents in US-marketed E-cigarette Refill Liquids and Popular Disposable E-cigarettes:<br>Chemical Analysis and Risk Assessment. Nicotine and Tobacco Research, 2022, 24, 1037-1046.                 | 1.4 | 31        |
| 3  | What to Expect When Expecting in Lab: A Review of Unique Risks and Resources for Pregnant<br>Researchers in the Chemical Laboratory. Chemical Research in Toxicology, 2022, 35, 163-198.                              | 1.7 | 5         |
| 4  | Differences in flavourant levels and synthetic coolant use between USA, EU and Canadian Juul<br>products. Tobacco Control, 2021, 30, 453-455.                                                                         | 1.8 | 34        |
| 5  | Quantification of Flavorants and Nicotine in Waterpipe Tobacco and Mainstream Smoke and Comparison to E-cigarette Aerosol. Nicotine and Tobacco Research, 2021, 23, 600-604.                                          | 1.4 | 8         |
| 6  | Influence of menthol and green apple e-liquids containing different nicotine concentrations among youth e-cigarette users Experimental and Clinical Psychopharmacology, 2021, 29, 355-365.                            | 1.3 | 16        |
| 7  | Fully Renewable, Effective, and Highly Biodegradable Plasticizer: Di- <i>n</i> -heptyl Succinate. ACS<br>Sustainable Chemistry and Engineering, 2020, 8, 12409-12418.                                                 | 3.2 | 19        |
| 8  | Chemical Adducts of Reactive Flavor Aldehydes Formed in E-Cigarette Liquids Are Cytotoxic and Inhibit<br>Mitochondrial Function in Respiratory Epithelial Cells. Nicotine and Tobacco Research, 2020, 22,<br>S25-S34. | 1.4 | 42        |
| 9  | Designing for a green chemistry future. Science, 2020, 367, 397-400.                                                                                                                                                  | 6.0 | 645       |
| 10 | Late Breaking Abstract - Differences in flavorant levels and synthetic coolant use between USA, EU<br>and Canadian Juul products. , 2020, , .                                                                         |     | 0         |
| 11 | Flavor-solvent reaction products in electronic cigarette liquids activate respiratory irritant receptors and elicit cytotoxic metabolic responses in airway epithelial cell. , 2020, , .                              |     | 0         |
| 12 | Flavorant–Solvent Reaction Products and Menthol in JUUL E-Cigarettes and Aerosol. American<br>Journal of Preventive Medicine, 2019, 57, 425-427.                                                                      | 1.6 | 39        |
| 13 | Heterogeneous copper-catalyzed direct reduction of C-glycosidic enones to saturated alcohols in water. Green Chemistry, 2019, 21, 238-244.                                                                            | 4.6 | 0         |
| 14 | Formation of flavorant–propylene Glycol Adducts With Novel Toxicological Properties in Chemically<br>Unstable E-Cigarette Liquids. Nicotine and Tobacco Research, 2019, 21, 1248-1258.                                | 1.4 | 139       |
| 15 | The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chemistry, 2018, 20, 1929-1961.                                                                                                        | 4.6 | 499       |
| 16 | Greener Methodology: An Aldol Condensation of an Unprotected C-Glycoside with Solid Base<br>Catalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 7810-7817.                                                 | 3.2 | 7         |
| 17 | Presence of High-Intensity Sweeteners in Popular Cigarillos of Varying Flavor Profiles. JAMA - Journal<br>of the American Medical Association, 2018, 320, 1380.                                                       | 3.8 | 13        |
| 18 | Designing Green Plasticizers: Linear Alkyl Diol Dibenzoate Plasticizers and a Thermally Reversible<br>Plasticizer. Polymers, 2018, 10, 646.                                                                           | 2.0 | 15        |

HANNO C ERYTHROPEL

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | How Green is Your Plasticizer?. Polymers, 2018, 10, 834.                                                                                                                                   | 2.0 | 102       |
| 20 | Exploration of a Novel, Enamine-Solid-Base Catalyzed Aldol Condensation with C-Glycosidic Pyranoses and Furanoses. ACS Sustainable Chemistry and Engineering, 2018, 6, 11196-11199.        | 3.2 | 5         |
| 21 | The effect of sucralose on flavor sweetness in electronic cigarettes varies between delivery devices.<br>PLoS ONE, 2017, 12, e0185334.                                                     | 1.1 | 20        |
| 22 | Rheology of Green Plasticizer/Poly(vinyl chloride) Blends via Time–Temperature Superposition.<br>Processes, 2017, 5, 43.                                                                   | 1.3 | 21        |
| 23 | In vitro functional screening as a means to identify new plasticizers devoid of reproductive toxicity.<br>Environmental Research, 2016, 150, 496-512.                                      | 3.7 | 58        |
| 24 | Designing green plasticizers: Influence of molecule geometry and alkyl chain length on the plasticizing effectiveness of diester plasticizers in PVC blends. Polymer, 2016, 89, 18-27.     | 1.8 | 100       |
| 25 | Toxicogenomic Screening of Replacements for Di(2-Ethylhexyl) Phthalate (DEHP) Using the<br>Immortalized TM4 Sertoli Cell Line. PLoS ONE, 2015, 10, e0138421.                               | 1.1 | 39        |
| 26 | Designing greener plasticizers: Effects of alkyl chain length and branching on the biodegradation of maleate based plasticizers. Chemosphere, 2015, 134, 106-112.                          | 4.2 | 38        |
| 27 | Leaching of the plasticizer di(2-ethylhexyl)phthalate (DEHP) from plastic containers and the question of human exposure. Applied Microbiology and Biotechnology, 2014, 98, 9967-9981.      | 1.7 | 316       |
| 28 | Designing green plasticizers: Influence of alkyl chain length on biodegradation and plasticization properties of succinate based plasticizers. Chemosphere, 2013, 91, 358-365.             | 4.2 | 60        |
| 29 | Comparative Rapid Toxicity Screening of Commercial and Potential "Green―Plasticizers Using<br>Bioluminescent Bacteria. Industrial & Engineering Chemistry Research, 2012, 51, 11555-11560. | 1.8 | 11        |
| 30 | Effects of di-(2-ethylhexyl) phthalate and four of its metabolites on steroidogenesis in MA-10 cells.<br>Ecotoxicology and Environmental Safety, 2012, 79, 108-115.                        | 2.9 | 66        |
| 31 | Designing green plasticizers: Influence of molecular geometry on biodegradation and plasticization properties. Chemosphere, 2012, 86, 759-766.                                             | 4.2 | 69        |
| 32 | Base supported ionic liquid-like phases as catalysts for the batch and continuous-flow Henry reaction. Green Chemistry, 2008, 10, 401.                                                     | 4.6 | 83        |