
Joydeep Bhattacharya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8829463/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	ASMR amplifies low frequency and reduces high frequency oscillations. Cortex, 2022, 149, 85-100.	2.4	6
2	Flow in contemporary musicians: Individual differences in flow proneness, anxiety, and emotional intelligence. PLoS ONE, 2022, 17, e0265936.	2.5	4
3	What Does it Take to Flow? Investigating Links Between Grit, Growth Mindset, and Flow in Musicians. Music & Science, 2021, 4, 205920432198952.	1.0	3
4	Multivariate patterns and longâ€range temporal correlations of alpha oscillations are associated with flexible manipulation of visual working memory representations. European Journal of Neuroscience, 2021, 54, 7260-7273.	2.6	1
5	Switch or stay? Automatic classification of internal mental states in bistable perception. Cognitive Neurodynamics, 2020, 14, 95-113.	4.0	9
6	From learning to creativity: Identifying the behavioural and neural correlates of learning to predict human judgements of musical creativity. Neurolmage, 2020, 206, 116311.	4.2	16
7	Causally linking neural dominance to perceptual dominance in a multisensory conflict. NeuroReport, 2020, 31, 991-998.	1.2	6
8	Investigating Age-Related Neural Compensation During Emotion Perception Using Electroencephalography. Brain Sciences, 2020, 10, 61.	2.3	5
9	Brain-Derived Neurotrophic Factor Val66Met Polymorphism Is Associated With a Reduced ERP Component Indexing Emotional Recollection. Frontiers in Psychology, 2019, 10, 1922.	2.1	5
10	The influence of motor preparation on the processing of action-relevant visual features. Scientific Reports, 2019, 9, 11084.	3.3	4
11	Neural entrainment is associated with subjective groove and complexity for performed but not mechanical musical rhythms. Experimental Brain Research, 2019, 237, 1981-1991.	1.5	17
12	Cardiac afferent activity modulates early neural signature of error detection during skilled performance. Neurolmage, 2019, 199, 704-717.	4.2	8
13	Modulations in resting state networks of subcortical structures linked to creativity. NeuroImage, 2019, 195, 311-319.	4.2	20
14	A machine learning approach to predict perceptual decisions: an insight into face pareidolia. Brain Informatics, 2019, 6, 2.	3.0	14
15	Spontaneous Visual Imagery During Meditation for Creating Visual Art: An EEG and Brain Stimulation Case Study. Frontiers in Psychology, 2019, 10, 210.	2.1	14
16	Anodal transcranial direct current stimulation (tDCS) boosts dominant brain oscillations. Brain Stimulation, 2018, 11, 660-662.	1.6	7
17	Ultraâ€highâ€field fMRI insights on insight: Neural correlates of the Aha!â€moment. Human Brain Mapping, 2018, 39, 3241-3252.	3.6	98
18	Right temporal alpha oscillations as a neural mechanism for inhibiting obvious associations. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12144-E12152.	7.1	71

JOYDEEP BHATTACHARYA

#	Article	IF	CITATIONS
19	Not Cure But Heal: Music and Medicine. Advances in Neurobiology, 2018, 21, 283-307.	1.8	1
20	That note sounds wrong! Age-related effects in processing of musical expectation. Brain and Cognition, 2017, 113, 1-9.	1.8	11
21	Cognitive Neuroscience: Synchronizing Brains inÂtheÂClassroom. Current Biology, 2017, 27, R346-R348.	3.9	16
22	Relaxing learned constraints through cathodal tDCS on the left dorsolateral prefrontal cortex. Scientific Reports, 2017, 7, 2916.	3.3	30
23	A Machine Learning Approach to Decode Mental States in Bistable Perception. , 2017, , .		2
24	The Role of Intuition in the Generation and Evaluation Stages of Creativity. Frontiers in Psychology, 2016, 7, 1420.	2.1	28
25	Musical training shapes neural responses to melodic and prosodic expectation. Brain Research, 2016, 1650, 267-282.	2.2	24
26	Navigating abstract virtual environment: an eeg study. Cognitive Neurodynamics, 2016, 10, 471-480.	4.0	4
27	The Proto-Fuse project: methods to boost creativity for architects. International Journal of Design Creativity and Innovation, 2016, 4, 206-221.	1.2	4
28	Modulation of EEG Theta Band Signal Complexity by Music Therapy. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650001.	1.7	9
29	Music for a Brighter World: Brightness Judgment Bias by Musical Emotion. PLoS ONE, 2016, 11, e0148959.	2.5	16
30	Aroused with heart: Modulation of heartbeat evoked potential by arousal induction and its oscillatory correlates. Scientific Reports, 2015, 5, 15717.	3.3	86
31	Electrical Brain Responses to an Auditory Illusion and the Impact of Musical Expertise. PLoS ONE, 2015, 10, e0129486.	2.5	24
32	Mind the gap: an attempt to bridge computational and neuroscientific approaches to study creativity. Frontiers in Human Neuroscience, 2014, 8, 540.	2.0	36
33	Best of both worlds: promise of combining brain stimulation and brain connectome. Frontiers in Systems Neuroscience, 2014, 8, 132.	2.5	61
34	A role for the precuneus in thought–action fusion: Evidence from participants with significant obsessive–compulsive symptoms. NeuroImage: Clinical, 2014, 4, 112-121.	2.7	31
35	An index of signal mode complexity based on orthogonal transformation. Journal of Computational Neuroscience, 2010, 29, 13-22.	1.0	3
36	Minimising prediction error for optimal nonlinear modelling of EEG signals using genetic algorithm. , 2009, , .		3

#	Article	IF	CITATIONS
37	Increase of Universality in Human Brain during Mental Imagery from Visual Perception. PLoS ONE, 2009, 4, e4121.	2.5	22
38	Deconstructing Insight: EEG Correlates of Insightful Problem Solving. PLoS ONE, 2008, 3, e1459.	2.5	165