Tao He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8829331/publications.pdf

Version: 2024-02-01

257357 395590 2,059 37 24 33 citations h-index g-index papers 38 38 38 1818 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Metal-Organic Frameworks for the Capture of Trace Aromatic Volatile Organic Compounds. CheM, 2018, 4, 1911-1927.	5.8	232
2	Zr(IV)-Based Metal-Organic Framework with T-Shaped Ligand: Unique Structure, High Stability, Selective Detection, and Rapid Adsorption of Cr ₂ O ₇ ^{2–} in Water. ACS Applied Materials & D. 16650-16659.	4.0	219
3	Ligand Rigidification for Enhancing the Stability of Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 10283-10293.	6.6	172
4	Chemically Stable Metal–Organic Frameworks: Rational Construction and Application Expansion. Accounts of Chemical Research, 2021, 54, 3083-3094.	7.6	167
5	Trace removal of benzene vapour using double-walled metal–dipyrazolate frameworks. Nature Materials, 2022, 21, 689-695.	13.3	109
6	Kinetically Controlled Reticular Assembly of a Chemically Stable Mesoporous Ni(II)-Pyrazolate Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 13491-13499.	6.6	97
7	Two isomeric In(<scp>iii</scp>)-MOFs: unexpected stability difference and selective fluorescence detection of fluoroquinolone antibiotics in water. Inorganic Chemistry Frontiers, 2020, 7, 1161-1171.	3.0	89
8	Guest-dependent pressure induced gate-opening effect enables effective separation of propene and propane in a flexible MOF. Chemical Engineering Journal, 2018, 346, 489-496.	6.6	87
9	In Situ Porphyrin Substitution in a Zr(IV)â€MOF for Stability Enhancement and Photocatalytic CO ₂ Reduction. Small, 2021, 17, e2005357.	5.2	84
10	Three-Component Cascade Annulation of \hat{l}^2 -Ketothioamides Promoted by CF3CH2OH: A Regioselective Synthesis of Tetrasubstituted Thiophenes. Journal of Organic Chemistry, 2013, 78, 10617-10628.	1.7	70
11	A Stable Zr(IV)-Based Metal–Organic Framework Constructed from C╀ Bridged Di-isophthalate Ligand for Sensitive Detection of Cr ₂ O ₇ ^{2–} in Water. Inorganic Chemistry, 2018, 57, 14260-14268.	1.9	62
12	Linker Desymmetrization: Access to a Series of Rare-Earth Tetracarboxylate Frameworks with Eight-Connected Hexanuclear Nodes. Journal of the American Chemical Society, 2021, 143, 2784-2791.	6.6	61
13	A Practice of Reticular Chemistry: Construction of a Robust Mesoporous Palladium Metal–Organic Framework via Metal Metathesis. Journal of the American Chemical Society, 2021, 143, 9901-9911.	6.6	60
14	Tuning Water Sorption in Highly Stable Zr(IV)-Metal–Organic Frameworks through Local Functionalization of Metal Clusters. ACS Applied Materials & Diterfaces, 2018, 10, 27868-27874.	4.0	54
15	Constructing new metal–organic frameworks with complicated ligands from "One-Pot― <i>in situ</i> reactions. Chemical Science, 2019, 10, 3949-3955.	3.7	46
16	Switching Regioselectivity of βâ€Ketothioamides by Means of Iodine Catalysis: Synthesis of Thiazolylidenes and 1,4â€Dithiines. Chemistry - A European Journal, 2014, 20, 5028-5033.	1.7	43
17	Functionalized Baseâ€Stable Metal–Organic Frameworks for Selective CO ₂ Adsorption and Proton Conduction. ChemPhysChem, 2017, 18, 3245-3252.	1.0	43
18	A Series of Mesoporous Rareâ€Earth Metal–Organic Frameworks Constructed from Organic Secondary Building Units. Angewandte Chemie - International Edition, 2021, 60, 2053-2057.	7.2	43

#	Article	IF	CITATIONS
19	Understanding how pore surface fluorination influences light hydrocarbon separation in metal–organic frameworks. Chemical Engineering Journal, 2021, 407, 127183.	6.6	39
20	Selective adsorption and separation of C ₂ hydrocarbons in a "flexible-robust― metal–organic framework based on a guest-dependent gate-opening effect. Chemical Communications, 2020, 56, 5520-5523.	2.2	35
21	A Green-Emission Metal–Organic Framework-Based Nanoprobe for Imaging Dual Tumor Biomarkers in Living Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 35375-35384.	4.0	32
22	Two interpenetrated metal–organic frameworks with a slim ethynyl-based ligand: designed for selective gas adsorption and structural tuning. CrystEngComm, 2018, 20, 6018-6025.	1.3	29
23	A stable Co(II)-based metal-organic framework with dual-functional pyrazolate-carboxylate ligand: Construction and CO2 selective adsorption and fixation. Chinese Chemical Letters, 2021, 32, 918-922.	4.8	27
24	Single-Crystal Synthesis and Structures of Highly Stable Ni ₈ -Pyrazolate-Based Metal–Organic Frameworks. , 2019, 1, 20-24.		26
25	Integrating multiple adsorption sites and tortuous diffusion paths into a metal–organic framework for C ₃ H ₄ /C ₃ H ₆ separation. Journal of Materials Chemistry A, 2019, 7, 25254-25257.	5.2	26
26	Enhancing proton conductivity in Zr-MOFs through tuning metal cluster connectivity. Journal of Materials Chemistry A, 2022, 10, 1236-1240.	5.2	22
27	A Baseâ€Resistant Zn ^{II} â€Based Metal–Organic Framework: Synthesis, Structure, Postsynthetic Modification, and Gas Adsorption. ChemPlusChem, 2016, 81, 864-871.	1.3	16
28	Stable Bimetallic Metal–Organic Framework with Dual-Functional Pyrazolate-Carboxylate Ligand: Rational Construction and C ₂ H ₂ /CO ₂ Separation., 2022, 4, 1032-1036.		15
29	A Zn(II)-based pillar-layered metal–organic framework: Synthesis, structure, and CO2 selective adsorption. Polyhedron, 2019, 158, 283-289.	1.0	10
30	Unique T-Shaped Ligand as a New Platform for Metal–Organic Frameworks. Crystal Growth and Design, 2019, 19, 430-436.	1.4	10
31	Reaction duration-dependent formation of two Cu(<scp>ii</scp>)-MOFs with selective adsorption properties of C ₃ H ₄ over C ₃ H ₆ . Dalton Transactions, 2019, 48, 9225-9233.	1.6	9
32	Metalloporphyrin functionalized multivariate IRMOF-74-IV analogs for photocatalytic CO2 reduction. Separation and Purification Technology, 2022, 292, 121080.	3.9	9
33	A three-dimensional metal–organic framework with high performance of dual cation sensing synthesized <i>via</i> single-crystal transformation. New Journal of Chemistry, 2020, 44, 11829-11834.	1.4	8
34	Ethylene purification in a metal–organic framework over a wide temperature range via pore confinement. Green Energy and Environment, 2023, 8, 1703-1710.	4.7	6
35	Nanocage containing metal-organic framework constructed from a newly designed low symmetry tetra-pyrazole ligand. Journal of Coordination Chemistry, 2016, 69, 3242-3249.	0.8	1
36	A Series of Mesoporous Rareâ€Earth Metal–Organic Frameworks Constructed from Organic Secondary Building Units. Angewandte Chemie, 2021, 133, 2081-2085.	1.6	1

#	Article	IF	CITATIONS
37	A Cu(II) metal–organic framework based on an angular ligand with a bulky uncoordinated group: synthesis, structure, and gas adsorption. Journal of Coordination Chemistry, 2020, 73, 844-853.	0.8	0