
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/882890/publications.pdf Version: 2024-02-01

Μίνι Ηλνι

#	Article	IF	CITATIONS
1	Bacterial peptidoglycan muropeptides benefit mitochondrial homeostasis and animal physiology by acting as ATP synthase agonists. Developmental Cell, 2022, 57, 361-372.e5.	3.1	8
2	The TORC1 phosphoproteome in C.Âelegans reveals roles in transcription and autophagy. IScience, 2022, 25, 104186.	1.9	2
3	Learning from the worm: the effectiveness of protein-bound Moco to treat Moco deficiency. Genes and Development, 2021, 35, 177-179.	2.7	0
4	Fatty acids impact sarcomere integrity through myristoylation and ER homeostasis. Cell Reports, 2021, 36, 109539.	2.9	2
5	Regulation of Nucleotide Metabolism and Germline Proliferation in Response to Nucleotide Imbalance and Genotoxic Stresses by EndoU Nuclease. Cell Reports, 2020, 30, 1848-1861.e5.	2.9	12
6	Non-Canonical Caspase Activity Antagonizes p38 MAPK Stress-Priming Function to Support Development. Developmental Cell, 2020, 53, 358-369.e6.	3.1	25
7	TOR Signaling in <i>Caenorhabditis elegans</i> Development, Metabolism, and Aging. Genetics, 2019, 213, 329-360.	1.2	101
8	Mitochondrial Dysfunction in C.Âelegans Activates Mitochondrial Relocalization and Nuclear Hormone Receptor-Dependent Detoxification Genes. Cell Metabolism, 2019, 29, 1182-1191.e4.	7.2	55
9	Tag team: Roles of miRNAs and Proteolytic Regulators in Ensuring Robust Gene Expression Dynamics. Trends in Genetics, 2018, 34, 21-29.	2.9	4
10	The Vitamin K Epoxide Reductase <i>Vkorc111</i> Promotes Preadipocyte Differentiation in Mice. Obesity, 2018, 26, 1303-1311.	1.5	9
11	Microbial Siderophore Enterobactin Promotes Mitochondrial Iron Uptake and Development of the Host via Interaction with ATP Synthase. Cell, 2018, 175, 571-582.e11.	13.5	124
12	An unexpected benefit from E. coli: how enterobactin benefits host health. Microbial Cell, 2018, 5, 469-471.	1.4	4
13	Fatty Acids Regulate Germline Sex Determination through ACS-4-Dependent Myristoylation. Cell, 2017, 169, 457-469.e13.	13.5	37
14	Coupled Caspase and N-End Rule Ligase Activities Allow Recognition and Degradation of Pluripotency Factor LIN-28 during Non-Apoptotic Development. Developmental Cell, 2017, 41, 665-673.e6.	3.1	41
15	Rasal2 deficiency reduces adipogenesis and occurrence of obesity-related disorders. Molecular Metabolism, 2017, 6, 494-502.	3.0	11
16	The Histone Methyltransferase Ash1l is Required for Epidermal Homeostasis in Mice. Scientific Reports, 2017, 7, 45401.	1.6	22
17	Starvation-Induced Stress Response Is Critically Impacted by Ceramide Levels in <i>Caenorhabditis elegans</i> . Genetics, 2017, 205, 775-785.	1.2	21
18	RNA Binding Protein Vigilin Collaborates with miRNAs To Regulate Gene Expression for <i>Caenorhabditis elegans</i> Larval Development. G3: Genes, Genomes, Genetics, 2017, 7, 2511-2518.	0.8	7

#	Article	IF	CITATIONS
19	A vitamin-B2-sensing mechanism that regulates gut protease activity to impact animal's food behavior and growth. ELife, 2017, 6, .	2.8	58
20	Generation of a Mouse Full-length Balancer with Versatile Cassette-shuttling Selection Strategy. International Journal of Biological Sciences, 2016, 12, 911-916.	2.6	5
21	Notch signaling protects animals from nucleotide deficiency. Cell Cycle, 2016, 15, 1941-1942.	1.3	2
22	Time to move the fat. Genes and Development, 2016, 30, 1481-1482.	2.7	6
23	Disruption of the Golgi protein Otg1 gene causes defective hormone secretion and aberrant glucose homeostasis in mice. Cell and Bioscience, 2016, 6, 41.	2.1	5
24	Developmental Defects of Caenorhabditis elegans Lacking Branched-chain α-Ketoacid Dehydrogenase Are Mainly Caused by Monomethyl Branched-chain Fatty Acid Deficiency. Journal of Biological Chemistry, 2016, 291, 2967-2973.	1.6	26
25	Nucleotide levels regulate germline proliferation through modulating GLP-1/Notch signaling in <i>C. elegans</i> . Genes and Development, 2016, 30, 307-320.	2.7	39
26	Disruption of Gpr45 causes reduced hypothalamic POMC expression and obesity. Journal of Clinical Investigation, 2016, 126, 3192-3206.	3.9	21
27	Multi-scaled normal mode analysis method for dynamics simulation of protein-membrane complexes: A case study of potassium channel gating motion correlations. Journal of Chemical Physics, 2015, 143, 134113.	1.2	3
28	Twists and turns—How we stepped into and had fun in the "boring―lipid field. Science China Life Sciences, 2015, 58, 1073-1083.	2.3	5
29	The GATA Factor elt-1 Regulates C. elegans Developmental Timing by Promoting Expression of the let-7 Family MicroRNAs. PLoS Genetics, 2015, 11, e1005099.	1.5	12
30	A Lipid-TORC1 Pathway Promotes Neuronal Development and Foraging Behavior under Both Fed and Fasted Conditions in C.Âelegans. Developmental Cell, 2015, 33, 260-271.	3.1	36
31	Intestinal apical polarity mediates regulation of TORC1 by glucosylceramide in <i>C. elegans</i> . Genes and Development, 2015, 29, 1218-1223.	2.7	38
32	A piggyBac insertion disrupts Foxl2 expression that mimics BPES syndrome in mice. Human Molecular Genetics, 2014, 23, 3792-3800.	1.4	10
33	CED-3 caspase acts with miRNAs to regulate non-apoptotic gene expression dynamics for robust development in C. elegans. ELife, 2014, 3, e04265.	2.8	43
34	The Tumor Suppressor Rb Critically Regulates Starvation-Induced Stress Response in C.Âelegans. Current Biology, 2013, 23, 975-980.	1.8	25
35	Functional Analysis of Neuronal MicroRNAs in Caenorhabditis elegans Dauer Formation by Combinational Genetics and Neuronal miRISC Immunoprecipitation. PLoS Genetics, 2013, 9, e1003592.	1.5	19
36	Functional analysis of the miRNA-mRNA interaction network inC. elegans. Worm, 2013, 2, e26894.	1.0	2

#	Article	IF	CITATIONS
37	Peroxisome Protein Transportation Affects Metabolism of Branched-Chain Fatty Acids That Critically Impact Growth and Development of C. elegans. PLoS ONE, 2013, 8, e76270.	1.1	18
38	A novel sphingolipid-TORC1 pathway critically promotes postembryonic development in Caenorhabditis elegans. ELife, 2013, 2, e00429.	2.8	85
39	Regulation of maternal phospholipid composition and IP ₃ -dependent embryonic membrane dynamics by a specific fatty acid metabolic event in <i>C. elegans</i> . Genes and Development, 2012, 26, 554-566.	2.7	40
40	Systematic Analysis of Tissue-Restricted miRISCs Reveals a Broad Role for MicroRNAs in Suppressing Basal Activity of the C.Âelegans Pathogen Response. Molecular Cell, 2012, 46, 530-541.	4.5	47
41	Inner Nuclear Envelope Proteins SUN1 and SUN2 Play a Prominent Role in the DNA Damage Response. Current Biology, 2012, 22, 1609-1615.	1.8	100
42	KASH protein Syne-2/Nesprin-2 and SUN proteins SUN1/2 mediate nuclear migration during mammalian retinal development. Human Molecular Genetics, 2011, 20, 1061-1073.	1.4	144
43	microRNAs play critical roles in the survival and recovery of <i>Caenorhabditis elegans</i> from starvation-induced L1 diapause. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17997-18002.	3.3	98
44	Advancing biology with a growing worm field. Developmental Dynamics, 2010, 239, 1263-1264.	0.8	8
45	Endothelial SURâ€8 acts in an ERKâ€independent pathway during atrioventricular cushion development. Developmental Dynamics, 2010, 239, 2005-2013.	0.8	31
46	Allele-Specific Suppressors of <i>lin-1(R175Opal)</i> Identify Functions of MOC-3 and DPH-3 in tRNA Modification Complexes in <i>Caenorhabditis elegans</i> . Genetics, 2010, 185, 1235-1247.	1.2	7
47	The fatty acid synthase <i>fasn-1</i> acts upstream of WNK and Ste20/GCK-VI kinases to modulate antimicrobial peptide expression in <i>C. elegans</i> epidermis. Virulence, 2010, 1, 113-122.	1.8	50
48	SUN1 and SUN2 play critical but partially redundant roles in anchoring nuclei in skeletal muscle cells in mice. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10207-10212.	3.3	221
49	P-Type ATPase TAT-2 Negatively Regulates Monomethyl Branched-Chain Fatty Acid Mediated Function in Post-Embryonic Growth and Development in C. elegans. PLoS Genetics, 2009, 5, e1000589.	1.5	26
50	Systematic analysis of dynamic miRNA-target interactions during <i>C. elegans</i> development. Development (Cambridge), 2009, 136, 3043-3055.	1.2	41
51	SUN1/2 and Syne/Nesprin-1/2 Complexes Connect Centrosome to the Nucleus during Neurogenesis and Neuronal Migration in Mice. Neuron, 2009, 64, 173-187.	3.8	414
52	mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein–enriched transcripts. Nature Methods, 2008, 5, 813-819.	9.0	201
53	Muscle cell migrations of C. elegans are mediated by the α-integrin INA-1, Eph receptor VAB-1, and a novel peptidase homologue MNP-1. Developmental Biology, 2008, 318, 215-223.	0.9	17
54	Genes involved in pre-mRNA 3′-end formation and transcription termination revealed by a <i>lin-15</i> operon Muv suppressor screen. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16665-16670.	3.3	50

#	Article	IF	CITATIONS
55	ADAM10 is essential for proteolytic activation of Notch during thymocyte development. International Immunology, 2008, 20, 1181-1187.	1.8	90
56	A branched-chain fatty acid is involved in post-embryonic growth control in parallel to the insulin receptor pathway and its biosynthesis is feedback-regulated in <i>C. elegans</i> . Genes and Development, 2008, 22, 2102-2110.	2.7	71
57	A Genetic Approach to Study the Role of Nuclear Envelope Components in Nuclear Positioning. Novartis Foundation Symposium, 2008, , 208-226.	1.2	22
58	Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development (Cambridge), 2007, 134, 901-908.	1.2	230
59	SUN1 Is Required for Telomere Attachment to Nuclear Envelope and Gametogenesis in Mice. Developmental Cell, 2007, 12, 863-872.	3.1	376
60	Systematic Identification of C.Âelegans miRISC Proteins, miRNAs, and mRNA Targets by Their Interactions with GW182 Proteins AIN-1 and AIN-2. Molecular Cell, 2007, 28, 598-613.	4.5	226
61	SynMuv Genes Redundantly Inhibit lin-3/EGF Expression to Prevent Inappropriate Vulval Induction in C. elegans. Developmental Cell, 2006, 10, 667-672.	3.1	95
62	Genetic redundancy masks diverse functions of the tumor suppressor gene PTEN during C. elegans development. Genes and Development, 2006, 20, 423-428.	2.7	25
63	Diverse Chromatin Remodeling Genes Antagonize the Rb-Involved SynMuv Pathways in C. elegans. PLoS Genetics, 2006, 2, e74.	1.5	89
64	Ras Signaling in C. Elegans. , 2006, , 199-225.		1
65	The Caenorhabditis elegans aristaless Orthologue, alr-1, Is Required for Maintaining the Functional and Structural Integrity of the Amphid Sensory Organs. Molecular Biology of the Cell, 2005, 16, 4695-4704.	0.9	23
66	A Gain-of-Function Allele of cbp-1, the Caenorhabditis elegans Ortholog of the Mammalian CBP/p300 Gene, Causes an Increase in Histone Acetyltransferase Activity and Antagonism of Activated Ras. Molecular and Cellular Biology, 2005, 25, 9427-9434.	1.1	22
67	Syne proteins anchor muscle nuclei at the neuromuscular junction. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4359-4364.	3.3	193
68	The Developmental Timing Regulator AIN-1 Interacts with miRISCs and May Target the Argonaute Protein ALG-1 to Cytoplasmic P Bodies in C. elegans. Molecular Cell, 2005, 19, 437-447.	4.5	232
69	Efficient Transposition of the piggyBac (PB) Transposon in Mammalian Cells and Mice. Cell, 2005, 122, 473-483.	13.5	865
70	Monomethyl Branched-Chain Fatty Acids Play an Essential Role in Caenorhabditis elegans Development. PLoS Biology, 2004, 2, e257.	2.6	186
71	Cis regulatory requirements for vulval cell-specific expression of the caenorhabditis elegans fibroblast growth factor gene egl-17. Developmental Biology, 2003, 257, 104-116.	0.9	45
72	Suppression of the ELO-2 FA Elongation Activity Results in Alterations of the Fatty Acid Composition and Multiple Physiological Defects, Including Abnormal Ultradian Rhythms, in <i>Caenorhabditis elegans</i> . Genetics, 2003, 163, 159-169.	1.2	71

#	Article	IF	CITATIONS
73	fzr-1 and lin-35/Rb function redundantly to control cell proliferation in C. elegans as revealed by a nonbiased synthetic screen. Genes and Development, 2002, 16, 503-517.	2.7	128
74	Role of ANC-1 in Tethering Nuclei to the Actin Cytoskeleton. Science, 2002, 298, 406-409.	6.0	373
75	The Caenorhabditis elegans EGL-26 Protein Mediates Vulval Cell Morphogenesis. Developmental Biology, 2002, 241, 247-258.	0.9	29
76	The C. elegans evl-20 Gene Is a Homolog of the Small GTPase ARL2 and Regulates Cytoskeleton Dynamics during Cytokinesis and Morphogenesis. Developmental Cell, 2002, 2, 579-591.	3.1	61
77	A Cuticle Collagen Encoded by the <i>lon-3</i> Gene May Be a Target of TGF-β Signaling in Determining <i>Caenorhabditis elegans</i> Body Shape. Genetics, 2002, 162, 1631-1639.	1.2	31
78	A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nature Genetics, 2001, 27, 89-93.	9.4	370
79	C. elegans Rb, NuRD, and Ras regulate lin-39 -mediated cell fusion during vulval fate specification. Current Biology, 2001, 11, 1874-1879.	1.8	53
80	Role of <i>C. elegans lin-40</i> MTA in vulval fate specification and morphogenesis. Development (Cambridge), 2001, 128, 4911-4921.	1.2	42
81	<i>unc-83</i> encodes a novel component of the nuclear envelope and is essential for proper nuclear migration. Development (Cambridge), 2001, 128, 5039-5050.	1.2	143
82	Building a protein interaction map: research in the post-genome era. BioEssays, 2000, 22, 503-506.	1.2	5
83	The synthetic multivulval genes ofC. elegans: functional redundancy, Ras-antagonism, and cell fate determination. Genesis, 2000, 26, 279-284.	0.8	57
84	sem-4 Promotes Vulval Cell-Fate Determination in Caenorhabditis elegans through Regulation of lin-39 Hox. Developmental Biology, 2000, 224, 496-506.	0.9	30
85	A new locus for dominant drusen and macular degeneration maps to chromosome 6q14. American Journal of Ophthalmology, 2000, 130, 197-202.	1.7	33
86	Getting signals crossed in C. elegans. Current Opinion in Genetics and Development, 2000, 10, 523-528.	1.5	6
87	The leucine-rich repeat protein SUR-8 enhances MAP kinase activation and forms a complex with Ras and Raf. Genes and Development, 2000, 14, 895-900.	2.7	128
88	A New Locus for Autosomal Dominant Stargardt-Like Disease Maps to Chromosome 4. American Journal of Human Genetics, 1999, 64, 1394-1399.	2.6	88
89	Clinical and genetic studies of an autosomal dominant cone-rod dystrophy with features of Stargardt disease. Ophthalmic Genetics, 1999, 20, 71-81.	0.5	27
90	Genetics of RAS signaling in C. elegans. Trends in Genetics, 1998, 14, 466-472.	2.9	201

#	Article	IF	CITATIONS
91	SUR-8, a Conserved Ras-Binding Protein with Leucine-Rich Repeats, Positively Regulates Ras-Mediated Signaling in C. elegans. Cell, 1998, 94, 119-130.	13.5	192
92	<i>Caenorhabditis elegans</i> SUR-5, a Novel but Conserved Protein, Negatively Regulates LET-60 Ras Activity during Vulval Induction. Molecular and Cellular Biology, 1998, 18, 4556-4564.	1.1	134
93	A New Marker for Mosaic Analysis in Caenorhabditis elegans Indicates a Fusion Between hyp6 and hyp7, Two Major Components of the Hypodermis. Genetics, 1998, 149, 1323-1334.	1.2	201
94	Control and integration of cell signaling pathways duringC. Elegans vulval development. BioEssays, 1996, 18, 473-480.	1.2	70
95	The C. elegans ksr-1 gene encodes a novel raf-related kinase involved in Ras-mediated signal transduction. Cell, 1995, 83, 889-901.	13.5	295
96	C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature, 1993, 363, 133-140.	13.7	263