
## Rosa Espinosa-Marzal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8828672/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Rheological Characteristics of Ionic Liquids under Nanoconfinement. Langmuir, 2022, 38, 2961-2971.                                                                                                              | 3.5  | 6         |
| 2  | Pathological cardiolipin-promoted membrane hemifusion stiffens pulmonary surfactant membranes.<br>Biophysical Journal, 2022, 121, 886-896.                                                                      | 0.5  | 7         |
| 3  | Chargeâ€Induced Structural Changes of Confined Copolymer Hydrogels for Controlled Surface<br>Morphology, Rheological Response, Adhesion, and Friction. Advanced Functional Materials, 2022, 32, .               | 14.9 | 9         |
| 4  | Velocity-weakening and -strengthening friction at single and multiasperity contacts with calcite single crystals. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, . | 7.1  | 3         |
| 5  | Compositional Tuning Reveals a Pathway to Achieve a Strong and Lubricious Double Network in<br>Agarose-Polyacrylamide Hydrogels. Tribology Letters, 2022, 70, .                                                 | 2.6  | 2         |
| 6  | Transient stiffening of cartilage during joint articulation: A microindentation study. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 113, 104113.                                           | 3.1  | 4         |
| 7  | Nanoheterogeneity of LiTFSI Solutions Transitions Close to a Surface and with Concentration. Nano Letters, 2021, 21, 2304-2309.                                                                                 | 9.1  | 9         |
| 8  | Effects of Layering and Supporting Substrate on Liquid Slip at the Single-Layer Graphene Interface. ACS<br>Nano, 2021, 15, 10095-10106.                                                                         | 14.6 | 19        |
| 9  | Using Patterned Self-Assembled Monolayers to Tune Graphene–Substrate Interactions. Langmuir, 2021,<br>37, 9996-10005.                                                                                           | 3.5  | 6         |
| 10 | Nanoscale insight into the relation between pressure solution of calcite and interfacial friction.<br>Journal of Colloid and Interface Science, 2021, 601, 254-264.                                             | 9.4  | 7         |
| 11 | Correlation Between the Adsorption and the Nanotribological Performance of Fatty Acid-Based<br>Organic Friction Modifiers on Stainless Steel. Tribology Letters, 2020, 68, 1.                                   | 2.6  | 21        |
| 12 | Advances in Understanding Hydrogel Lubrication. Colloids and Interfaces, 2020, 4, 54.                                                                                                                           | 2.1  | 18        |
| 13 | Potential-Dependent Layering in the Electrochemical Double Layer of Water-in-Salt Electrolytes. ACS<br>Applied Energy Materials, 2020, 3, 8086-8094.                                                            | 5.1  | 28        |
| 14 | Mediating the Enhanced Interaction Between Hydroxyapatite and Agarose through Amorphous<br>Calcium Carbonate. Crystal Growth and Design, 2020, 20, 6917-6929.                                                   | 3.0  | 5         |
| 15 | Insight into the Electrical Double Layer of Ionic Liquids Revealed through Its Temporal Evolution.<br>Advanced Materials Interfaces, 2020, 7, 2001313.                                                          | 3.7  | 22        |
| 16 | Effects of Nanoscale Roughness on the Lubricious Behavior of an Ionic Liquid. Advanced Materials<br>Interfaces, 2020, 7, 2000314.                                                                               | 3.7  | 14        |
| 17 | Nanoscale insight into the degradation mechanisms of the cartilage articulating surface preceding OA. Biomaterials Science, 2020, 8, 3944-3955.                                                                 | 5.4  | 12        |
| 18 | lon specific effects on the pressure solution of calcite single crystals. Geochimica Et Cosmochimica<br>Acta. 2020, 280, 116-129.                                                                               | 3.9  | 6         |

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Influence of Water on Structure, Dynamics, and Electrostatics of Hydrophilic and Hydrophobic Ionic<br>Liquids in Charged and Hydrophilic Confinement between Mica Surfaces. ACS Applied Materials &<br>Interfaces, 2019, 11, 33465-33477.        | 8.0  | 28        |
| 20 | Adsorption Behavior and Nanotribology of Amine-Based Friction Modifiers on Steel Surfaces. Journal of Physical Chemistry C, 2019, 123, 13672-13680.                                                                                              | 3.1  | 32        |
| 21 | Tailoring Calcite Growth through an Amorphous Precursor in a Hydrogel Environment. Crystal<br>Growth and Design, 2019, 19, 3192-3205.                                                                                                            | 3.0  | 14        |
| 22 | Effect of Fluid Chemistry on the Interfacial Composition, Adhesion, and Frictional Response of Calcite<br>Single Crystals—Implications for Injectionâ€Induced Seismicity. Journal of Geophysical Research: Solid<br>Earth, 2019, 124, 5607-5628. | 3.4  | 11        |
| 23 | Mixing oil and water with ionic liquids: bicontinuous microemulsions under confinement. Soft<br>Matter, 2019, 15, 9609-9613.                                                                                                                     | 2.7  | 6         |
| 24 | Influence of Loading Conditions and Temperature on Static Friction and Contact Aging of Hydrogels with Modulated Microstructures. ACS Applied Materials & Interfaces, 2019, 11, 42722-42733.                                                     | 8.0  | 14        |
| 25 | Slippery and Sticky Graphene in Water. ACS Nano, 2019, 13, 2072-2082.                                                                                                                                                                            | 14.6 | 12        |
| 26 | Lubrication of Si-Based Tribopairs with a Hydrophobic Ionic Liquid: The Multiscale Influence of Water.<br>Journal of Physical Chemistry C, 2018, 122, 7331-7343.                                                                                 | 3.1  | 23        |
| 27 | Stick–Slip Friction Reveals Hydrogel Lubrication Mechanisms. Langmuir, 2018, 34, 756-765.                                                                                                                                                        | 3.5  | 52        |
| 28 | Molecular Mechanisms Underlying Lubrication by Ionic Liquids: Activated Slip and Flow. Lubricants, 2018, 6, 64.                                                                                                                                  | 2.9  | 21        |
| 29 | Electroviscous Retardation of the Squeeze Out of Nanoconfined Ionic Liquids. Journal of Physical<br>Chemistry C, 2018, 122, 21344-21355.                                                                                                         | 3.1  | 27        |
| 30 | The role of water in fault lubrication. Nature Communications, 2018, 9, 2309.                                                                                                                                                                    | 12.8 | 44        |
| 31 | Effect of divalent ions and a polyphosphate on composition, structure, and stiffness of simulated drinking water biofilms. Npj Biofilms and Microbiomes, 2018, 4, 15.                                                                            | 6.4  | 33        |
| 32 | Insight into the Viscous and Adhesive Contributions to Hydrogel Friction. Tribology Letters, 2018, 66,<br>1.                                                                                                                                     | 2.6  | 27        |
| 33 | Collective dehydration of ions in nano-pores. Physical Chemistry Chemical Physics, 2017, 19, 13462-13468.                                                                                                                                        | 2.8  | 9         |
| 34 | Calcium carbonate with nanogranular microstructure yields enhanced toughness. Nanoscale, 2017, 9,<br>16689-16699.                                                                                                                                | 5.6  | 6         |
| 35 | Reconciling DLVO and non-DLVO Forces and Their Implications for Ion Rejection by a Polyamide<br>Membrane. Langmuir, 2017, 33, 8982-8992.                                                                                                         | 3.5  | 14        |
| 36 | Self-adaptive hydrogels to mineralization. Soft Matter, 2017, 13, 5469-5480.                                                                                                                                                                     | 2.7  | 9         |

Rosa Espinosa-Marzal

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Ion specific hydration in nano-confined electrical double layers. Journal of Colloid and Interface<br>Science, 2017, 506, 263-270.                                                                   | 9.4  | 17        |
| 38 | Strong Stretching of Poly(ethylene glycol) Brushes Mediated by Ionic Liquid Solvation. Journal of<br>Physical Chemistry Letters, 2017, 8, 3954-3960.                                                 | 4.6  | 9         |
| 39 | Assembly, Morphology, Diffusivity, and Indentation of Hydrogel-Supported Lipid Bilayers. Langmuir, 2017, 33, 7105-7117.                                                                              | 3.5  | 15        |
| 40 | Insight into the Electrical Double Layer of an Ionic Liquid on Graphene. Scientific Reports, 2017, 7, 4225.                                                                                          | 3.3  | 74        |
| 41 | Influence of Chain Stiffness, Grafting Density and Normal Load on the Tribological and Structural<br>Behavior of Polymer Brushes: A Nonequilibrium-Molecular-Dynamics Study. Polymers, 2016, 8, 254. | 4.5  | 24        |
| 42 | Stepwise collapse of highly overlapping electrical double layers. Physical Chemistry Chemical Physics, 2016, 18, 24417-24427.                                                                        | 2.8  | 22        |
| 43 | Effect of the environmental humidity on the bulk, interfacial and nanoconfined properties of an ionic<br>liquid. Physical Chemistry Chemical Physics, 2016, 18, 22719-22730.                         | 2.8  | 51        |
| 44 | Molecular insight into the nanoconfined calcite–solution interface. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12047-12052.                         | 7.1  | 43        |
| 45 | Mechanistic Approach to Predict the Combined Effects of Additives and Surface Templates on Calcium Carbonate Mineralization. Crystal Growth and Design, 2016, 16, 6186-6198.                         | 3.0  | 16        |
| 46 | Effect of Crosslinking on the Microtribological Behavior of Model Polymer Brushes. Tribology<br>Letters, 2016, 63, 1.                                                                                | 2.6  | 22        |
| 47 | Response of Simulated Drinking Water Biofilm Mechanical and Structural Properties to Long-Term<br>Disinfectant Exposure. Environmental Science & Technology, 2016, 50, 1779-1787.                    | 10.0 | 66        |
| 48 | Layering of ionic liquids on rough surfaces. Nanoscale, 2016, 8, 4094-4106.                                                                                                                          | 5.6  | 48        |
| 49 | Influence of Environmental Humidity on the Wear and Friction of a Silica/Silicon Tribopair Lubricated with a Hydrophilic Ionic Liquid. ACS Applied Materials & amp; Interfaces, 2016, 8, 2961-2973.  | 8.0  | 31        |
| 50 | Ab Initio Studies of Calcium Carbonate Hydration. Journal of Physical Chemistry A, 2015, 119, 11591-11600.                                                                                           | 2.5  | 19        |
| 51 | Irreversible structural change of a dry ionic liquid under nanoconfinement. Physical Chemistry Chemical Physics, 2015, 17, 13613-13624.                                                              | 2.8  | 62        |
| 52 | Polymer Brushes under Shear: Molecular Dynamics Simulations Compared to Experiments. Langmuir, 2015, 31, 4798-4805.                                                                                  | 3.5  | 53        |
| 53 | Environmental Influence on the Surface Chemistry of Ionic-Liquid-Mediated Lubrication in a Silica/Silicon Tribopair. Journal of Physical Chemistry C, 2014, 118, 29389-29400.                        | 3.1  | 30        |
| 54 | Interactions in Water Across Interfaces: From Nano to Macro-Scale Perspective. NATO Science for<br>Peace and Security Series C: Environmental Security, 2014, , 1-14.                                | 0.2  | 1         |

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Microslips to "Avalanches―in Confined, Molecular Layers of Ionic Liquids. Journal of Physical<br>Chemistry Letters, 2014, 5, 179-184.                                                              | 4.6  | 107       |
| 56 | Ionic Liquids Confined in Hydrophilic Nanocontacts: Structure and Lubricity in the Presence of Water. Journal of Physical Chemistry C, 2014, 118, 6491-6503.                                       | 3.1  | 98        |
| 57 | Mitigation of ASR by the use of LiNO3—Characterization of the reaction products. Cement and<br>Concrete Research, 2014, 59, 73-86.                                                                 | 11.0 | 53        |
| 58 | Impact of in-pore salt crystallization on transport properties. Environmental Earth Sciences, 2013, 69, 2657-2669.                                                                                 | 2.7  | 53        |
| 59 | Understanding the role of viscous solvent confinement in the tribological behavior of polymer brushes: a bioinspired approach. Soft Matter, 2013, 9, 10572.                                        | 2.7  | 35        |
| 60 | Exploring Lubrication Regimes at the Nanoscale: Nanotribological Characterization of Silica and Polymer Brushes in Viscous Solvents. Langmuir, 2013, 29, 10149-10158.                              | 3.5  | 37        |
| 61 | Sugars Communicate through Water: Oriented Glycans Induce Water Structuring. Biophysical<br>Journal, 2013, 104, 2686-2694.                                                                         | 0.5  | 20        |
| 62 | Impact of solvation on equilibrium conformation of polymer brushes in solvent mixtures. Soft<br>Matter, 2013, 9, 4045.                                                                             | 2.7  | 30        |
| 63 | Molecularly-Thin Precursor Films of Imidazolium-Based Ionic Liquids on Mica. Journal of Physical<br>Chemistry C, 2013, 117, 23676-23684.                                                           | 3.1  | 46        |
| 64 | Adhesion and Friction Properties of Polymer Brushes on Rough Surfaces: A Gradient Approach.<br>Langmuir, 2013, 29, 15251-15259.                                                                    | 3.5  | 38        |
| 65 | Two-Fluid Model for the Interpretation of Quartz Crystal Microbalance Response: Tuning Properties of Polymer Brushes with Solvent Mixtures. Journal of Physical Chemistry C, 2013, 117, 4533-4543. | 3.1  | 25        |
| 66 | Confinement During In-Pore Crystallization. , 2013, , .                                                                                                                                            |      | 0         |
| 67 | Hydrated-ion ordering in electrical double layers. Physical Chemistry Chemical Physics, 2012, 14, 6085.                                                                                            | 2.8  | 68        |
| 68 | Nucleation of sodium sulfate heptahydrate on mineral substrates studied by nuclear magnetic resonance. Journal of Crystal Growth, 2012, 338, 166-169.                                              | 1.5  | 25        |
| 69 | Poly(acrylamide) films at the solvent-induced glass transition: adhesion, tribology, and the influence of crosslinking. Soft Matter, 2012, 8, 9092.                                                | 2.7  | 43        |
| 70 | Density profile of water in nanoslit. Europhysics Letters, 2012, 99, 26001.                                                                                                                        | 2.0  | 12        |
| 71 | Can drying and re-wetting of magnesium sulfate salts lead to damage of stone?. Environmental Earth<br>Sciences, 2011, 63, 1463-1473.                                                               | 2.7  | 42        |
| 72 | Sodium sulfate heptahydrate I: The growth of single crystals. Journal of Crystal Growth, 2011, 329,<br>44-51.                                                                                      | 1.5  | 41        |

| #  | Article                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | The chemomechanics of crystallization during rewetting of limestone impregnated with sodium sulfate. Journal of Materials Research, 2011, 26, 1472-1481.                   | 2.6  | 46        |
| 74 | Advances in Understanding Damage by Salt Crystallization. Accounts of Chemical Research, 2010, 43, 897-905.                                                                | 15.6 | 138       |
| 75 | Mechanisms of damage by salt. Geological Society Special Publication, 2010, 331, 61-77.                                                                                    | 1.3  | 36        |
| 76 | Model for the mechanical stress due to the salt crystallization in porous materials. Construction and Building Materials, 2008, 22, 1350-1367.                             | 7.2  | 71        |
| 77 | Phase changes of salts in porous materials: Crystallization, hydration and deliquescence.<br>Construction and Building Materials, 2008, 22, 1758-1773.                     | 7.2  | 115       |
| 78 | Influence of the age and drying process on pore structure and sorption isotherms of hardened cement paste. Cement and Concrete Research, 2006, 36, 1969-1984.              | 11.0 | 113       |
| 79 | Inkbottle Pore-Method: Prediction of hygroscopic water content in hardened cement paste at variable climatic conditions. Cement and Concrete Research, 2006, 36, 1954-1968 | 11.0 | 56        |