
Liang Tao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8828401/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Frizzled proteins are colonic epithelial receptors for C. difficile toxin B. Nature, 2016, 538, 350-355.	13.7	229
2	Identification of a Botulinum Neurotoxin-like Toxin in a Commensal Strain of Enterococcus faecium. Cell Host and Microbe, 2018, 23, 169-176.e6.	5.1	127
3	Structural basis for recognition of frizzled proteins by <i>Clostridium difficile</i> toxin B. Science, 2018, 360, 664-669.	6.0	98
4	Sulfated glycosaminoglycans and low-density lipoprotein receptor contribute to Clostridium difficile toxin A entry into cells. Nature Microbiology, 2019, 4, 1760-1769.	5.9	71
5	Genome-wide CRISPR screens for Shiga toxins and ricin reveal Golgi proteins critical for glycosylation. PLoS Biology, 2018, 16, e2006951.	2.6	56
6	Engineered botulinum neurotoxin B with improved efficacy for targeting human receptors. Nature Communications, 2017, 8, 53.	5.8	46
7	Subtyping analysis reveals new variants and accelerated evolution of Clostridioides difficile toxin B. Communications Biology, 2020, 3, 347.	2.0	42
8	Structural basis for CSPG4 as a receptor for TcdB and a therapeutic target in Clostridioides difficile infection. Nature Communications, 2021, 12, 3748.	5.8	41
9	Alternative Sigma Factor σH Modulates Prophage Integration and Excision in Staphylococcus aureus. PLoS Pathogens, 2010, 6, e1000888.	2.1	37
10	Sulfhydryl compounds reduce Staphylococcus aureus biofilm formation by inhibiting PIA biosynthesis. FEMS Microbiology Letters, 2011, 316, 44-50.	0.7	32
11	Widespread Sequence Variations in VAMP1 across Vertebrates Suggest a Potential Selective Pressure from Botulinum Neurotoxins. PLoS Pathogens, 2014, 10, e1004177.	2.1	32
12	TFPI is a colonic crypt receptor for TcdB from hypervirulent clade 2 C.Âdifficile. Cell, 2022, 185, 980-994.e15.	13.5	30
13	Structural basis for the unique ganglioside and cell membrane recognition mechanism of botulinum neurotoxin DC. Nature Communications, 2017, 8, 1637.	5.8	26
14	Functional analyses of epidemic Clostridioides difficile toxin B variants reveal their divergence in utilizing receptors and inducing pathology. PLoS Pathogens, 2021, 17, e1009197.	2.1	23
15	Receptor Binding Domains of TcdB from Clostridioides difficile for Chondroitin Sulfate Proteoglycan-4 and Frizzled Proteins Are Functionally Independent and Additive. Toxins, 2020, 12, 736.	1.5	22
16	ClpL Is Required for Folding of CtsR in Streptococcus mutans. Journal of Bacteriology, 2013, 195, 576-584.	1.0	21
17	Strain-Dependent Recognition of a Unique Degradation Motif by ClpXP in Streptococcus mutans. MSphere, 2016, 1, .	1.3	15
18	Structural insight into Wnt signaling inhibition by <i>Clostridium difficile</i> toxin B. FEBS Journal, 2019, 286, 874-881.	2.2	15

LIANG TAO

#	Article	IF	CITATIONS
19	Degradation of SsrA-tagged proteins in streptococci. Microbiology (United Kingdom), 2015, 161, 884-894.	0.7	14
20	CtsR Regulation in mcsAB-Deficient Gram-Positive Bacteria. Journal of Bacteriology, 2012, 194, 1361-1368.	1.0	11
21	Sulfated glycosaminoglycans and low-density lipoprotein receptor mediate the cellular entry of Clostridium novyi alpha-toxin. Cell Research, 2021, 31, 935-938.	5.7	10
22	Distinctive signatures of pathogenic and antibiotic resistant potentials in the hadal microbiome. Environmental Microbiomes, 2022, 17, 19.	2.2	6
23	An Atypical Case of Monomicrobial Clostridioides difficile Septicemia With No Gastrointestinal Manifestations. Frontiers in Cellular and Infection Microbiology, 2022, 12, 853252.	1.8	1
24	157. Variations in VAMP1 across vertebrates suggest a potential selective pressure from botulinum neurotoxins. Toxicon, 2015, 93, S48-S49.	0.8	0