Bappi Paul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/882823/publications.pdf

Version: 2024-02-01

73 2,464 30 47
papers citations h-index g-index

76 76 76 2759
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Impact of silanized milled graphite nanoparticles on thermo-mechanical properties of epoxy nanocomposite. Materials Chemistry and Physics, 2022, 278, 125601.	4.0	10
2	Influence of Nanoscale Charge Trapping Layer on the Memory and Synaptic Characteristics of a Novel Rubidium Lead Chloride Quantum Dot Based Memristor. Advanced Electronic Materials, 2022, 8, .	5.1	23
3	Utilization of biowaste-derived catalysts for biodiesel production: process optimization using response surface methodology and particle swarm optimization method. Energy Advances, 2022, 1, 287-302.	3.3	14
4	Novel microporous organic-inorganic hybrid metal phosphonates as electrocatalysts towards water oxidation reaction. Electrochimica Acta, 2022, 416, 140277.	5.2	9
5	Morphologically controlled cobalt oxide nanoparticles for efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2021, 582, 322-332.	9.4	51
6	Microporous nickel phosphonate derived heteroatom doped nickel oxide and nickel phosphide: Efficient electrocatalysts for oxygen evolution reaction. Chemical Engineering Journal, 2021, 405, 126803.	12.7	112
7	Nickel Nanoparticles Supported on Nonreducible Mesoporous Materials: Effects of Framework Types on the Catalytic Decomposition of Methane. Bulletin of the Korean Chemical Society, 2021, 42, 168-171.	1.9	1
8	Magnetically Recoverable Graphene Oxide Wrapped CuCo2S4/Iron Oxides Composites for Supercapacitor Application and Fenton Degradation of Organic Molecules. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 1978-1991.	3.7	3
9	CoOx electro-catalysts anchored on nitrogen-doped carbon nanotubes for the oxygen evolution reaction. Sustainable Energy and Fuels, 2021, 5, 820-827.	4.9	10
10	Metal organic framework derived magnetically recoverable CuFe2O4 porous cubes for efficient photocatalytic application. Inorganic Chemistry Communication, 2021, 125, 108405.	3.9	20
11	Halide perovskite two-terminal analog memristor capable of photo-activated synaptic weight modulation for neuromorphic computing. Applied Physics Letters, 2021, 118, .	3.3	35
12	Understanding the Origin of Structure Sensitivity in Nano Crystalline Mixed Cu/Mgâ^'Al Oxides Catalyst for Lowâ€Pressure Methanol Synthesis. ChemCatChem, 2021, 13, 3290-3302.	3.7	8
13	Improvement of the Resistive Switching Characteristics upon Halide Mixing in an All-Inorganic RbPbl ₃ Perovskite Polymer Composite Based Flexible Device. Journal of Physical Chemistry C, 2021, 125, 13610-13618.	3.1	27
14	Influence of Indium as a Promoter on the Stability and Selectivity of the Nanocrystalline Cu/CeO ₂ Catalyst for CO ₂ Hydrogenation to Methanol. ACS Applied Materials & Samp; Interfaces, 2021, 13, 28201-28213.	8.0	27
15	Combined experimental and computational study to unravel the factors of the Cu/TiO2 catalyst for CO2 hydrogenation to methanol. Journal of CO2 Utilization, 2021, 50, 101576.	6.8	18
16	Design of highly stable MgO promoted Cu/ZnO catalyst for clean methanol production through selective hydrogenation of CO2. Applied Catalysis A: General, 2021, 623, 118239.	4.3	40
17	Bifunctional crystalline microporous organic polymers: Efficient heterogeneous catalysts for the synthesis of 5-hydroxymethylfurfural. Molecular Catalysis, 2021, 515, 111877.	2.0	6
18	Synthesis of novel AgCl loaded g-C3N5 with ultrahigh activity as visible light photocatalyst for pollutants degradation. Chemical Physics Letters, 2020, 738, 136862.	2.6	47

#	Article	IF	CITATIONS
19	Highly efficient conversion of the nitroarenes to amines at the interface of a ternary hybrid containing silver nanoparticles doped reduced graphene oxide/ graphitic carbon nitride under visible light. Journal of Hazardous Materials, 2020, 387, 121700.	12.4	36
20	Facile large scale synthesis of CuCr ₂ O ₄ /CuO nanocomposite using MOF route for photocatalytic degradation of methylene blue and tetracycline under visible light. Applied Organometallic Chemistry, 2020, 34, e5365.	3.5	28
21	Morphology controlled synthesis of 2D heterostructure Ag/WO3 nanocomposites for enhanced photoelectrochemical CO2 reduction performance. Journal of CO2 Utilization, 2020, 41, 101284.	6.8	20
22	Transesterification of soybean oil at room temperature using biowaste as catalyst; an experimental investigation on the effect of co-solvent on biodiesel yield. Renewable Energy, 2020, 162, 98-111.	8.9	49
23	Induced Vacancy-Assisted Filamentary Resistive Switching Device Based on RbPbl _{3–<i>x</i>} Cl _{<i>x</i>} Perovskite for RRAM Application. ACS Applied Materials & Device Based on M	8.0	46
24	Facile synthesis of YbVO4, and YVO4 nanostructures through MOF route for photocatalytic applications. Inorganic Chemistry Communication, 2020, 115, 107855.	3.9	18
25	Highly active novel CeTi2O6/g-C3N5 photocatalyst with extended spectral response towards removal of endocrine disruptor 2, 4-dichlorophenol in aqueous medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 592, 124583.	4.7	55
26	Facile Synthesis of Nanoporous Transition Metalâ€Based Phosphates for Oxygen Evolution Reaction. ChemCatChem, 2020, 12, 2091-2096.	3.7	106
27	Assessing damage mitigation by silanized milled graphite nanoparticles in hybrid GFRP laminated composites. Composites Part A: Applied Science and Manufacturing, 2020, 132, 105784.	7.6	16
28	Novel porous metal phosphonates as efficient electrocatalysts for the oxygen evolution reaction. Chemical Engineering Journal, 2020, 396, 125245.	12.7	54
29	Enhanced electrochemical performance of copper oxide nanobeads a potential electrode material for energy storage devices. Chemical Physics Letters, 2020, 749, 137472.	2.6	3
30	Compliance Current-Dependent Dual-Functional Bipolar and Threshold Resistive Switching in All-Inorganic Rubidium Lead-Bromide Perovskite-Based Flexible Device. ACS Applied Electronic Materials, 2020, 2, 1343-1351.	4.3	51
31	Bismuth Enriched Materials for Pseudo Capacitor Applications. , 2020, , .		1
32	Facile Synthesis of Spinel CoFe ₂ O ₄ Nanoparticle and Its Application as Magnetic Recoverable Photocatalyst for Degradation of Metronidazole and Some Selected Organic Dyes. Journal of Nanoscience and Nanotechnology, 2020, 20, 1209-1214.	0.9	2
33	Co-pyrolysis of rice straw and water hyacinth: Characterization of products, yields and biomass interaction effect. Biomass and Bioenergy, 2019, 127, 105281.	5.7	32
34	Facile synthesis of size-controlled Ag supported on WO3 nanorods and their application as novel and active catalyst in oxidant-free dehydrogenation of benzyl alcohols. Catalysis Communications, 2019, 132, 105804.	3. 3	25
35	Development of Highly Efficient and Durable Three-Dimensional Octahedron NiCo ₂ O ₄ Spinel Nanoparticles toward the Selective Oxidation of Styrene. Industrial & Engineering Chemistry Research, 2019, 58, 18168-18177.	3.7	17
36	Fabrication of Au Nanoparticles Supported on One-Dimensional La ₂ O ₃ Nanorods for Selective Esterification of Methacrolein to Methyl Methacrylate with Molecular Oxygen. ACS Sustainable Chemistry and Engineering, 2019, 7, 3982-3994.	6.7	27

#	Article	IF	CITATIONS
37	Low-temperature catalytic oxidation of aniline to azoxybenzene over an Ag/Fe ₂ O ₃ nanoparticle catalyst using H ₂ O ₂ as an oxidant. New Journal of Chemistry, 2019, 43, 8911-8918.	2.8	15
38	Room temperature catalytic reduction of nitrobenzene to azoxybenzene over one pot synthesised reduced graphene oxide decorated with Ag/ZnO nanocomposite. Catalysis Communications, 2019, 124, 71-75.	3.3	18
39	Synthesis of yttrium doped BiOF/RGO composite for visible light: Photocatalytic applications. Materials Science for Energy Technologies, 2019, 2, 112-116.	1.8	22
40	Photocatalytic oxidation of aromatic alcohols over silver supported on cobalt oxide nanostructured catalyst. Journal of Alloys and Compounds, 2019, 783, 583-592.	5.5	25
41	Room temperature photocatalytic conversion of aldehydes to esters using gold supported cerium oxide nanoparticles under visible light irradiation. Materials Letters, 2019, 237, 113-117.	2.6	11
42	Fabrication of a Novel ZnO/NiMoO ₄ Nanocomposite and Evaluation of Its Visible Light Driven Photocatalytic Performance. IEEE Nanotechnology Magazine, 2018, 17, 743-750.	2.0	8
43	Facile solvothermal synthesis of BiOI microsquares as a novel electrode material for supercapacitor applications. Materials Letters, 2018, 210, 109-112.	2.6	31
44	Facile Solvothermal Synthesis of CuCo2S4 Yolk-Shells and Their Visible-Light-Driven Photocatalytic Properties. Materials, 2018, 11, 2303.	2.9	7
45	Anchoring carbon spheres on BiOBr/g-C3N4 matrix for high-performance visible light photocatalysis. Ceramics International, 2018, 44, 23320-23323.	4.8	34
46	<i>Paederia foetida</i> Linn. promoted synthesis of CoFe ₂ O ₄ and NiFe ₂ O ₄ nanostructures and their photocatalytic efficiency. IET Nanobiotechnology, 2018, 12, 235-240.	3.8	10
47	One-pot hydrothermal synthesis of CuCo2S4/RGO nanocomposites for visible-light photocatalytic applications. Journal of Physics and Chemistry of Solids, 2018, 123, 242-253.	4.0	39
48	Waste snail shell derived heterogeneous catalyst for biodiesel production by the transesterification of soybean oil. RSC Advances, 2018, 8, 20131-20142.	3.6	183
49	One-pot green synthesis of zinc oxide nano rice and its application as sonocatalyst for degradation of organic dye and synthesis of 2-benzimidazole derivatives. Journal of Physics and Chemistry of Solids, 2017, 104, 152-159.	4.0	32
50	Paederia foetida Linn . promoted biogenic gold and silver nanoparticles: Synthesis, characterization, photocatalytic and in vitro efficacy against clinically isolated pathogens. Journal of Photochemistry and Photobiology B: Biology, 2017, 173, 210-215.	3.8	48
51	Fine cutting edge shaped Bi2O3rods/reduced graphene oxide (RGO) composite for supercapacitor and visible-light photocatalytic applications. Journal of Colloid and Interface Science, 2017, 498, 449-459.	9.4	121
52	Facile hydrothermal synthesis of ultrasmall W18O49 nanoparticles and studies of their photocatalytic activity towards degradation of methylene blue. Materials Chemistry and Physics, 2017, 188, 1-7.	4.0	39
53	Supercapacitors studies on BiPO ₄ nanoparticles synthesized via a simple microwave approach. Journal of Taibah University for Science, 2017, 11, 661-666.	2.5	27
54	Facile synthesis of novel CaFe 2 O 4 $/g$ -C 3 N 4 nanocomposites for degradation of methylene blue under visible-light irradiation. Journal of Colloid and Interface Science, 2016, 480, 126-136.	9.4	104

#	Article	IF	CITATIONS
55	Facile one-pot strategy to prepare Ag/Fe2O3 decorated reduced graphene oxide nanocomposite and its catalytic application in chemoselective reduction of nitroarenes. Journal of Alloys and Compounds, 2016, 681, 316-323.	5.5	37
56	Biomolecule-assisted solvothermal synthesis of Cu ₂ SnS ₃ flowers/RGO nanocomposites and their visible-light-driven photocatalytic activities. RSC Advances, 2016, 6, 74177-74185.	3.6	36
57	One-pot green synthesis of gold nanoparticles and studies of their anticoagulative and photocatalytic activities. Materials Letters, 2016, 185, 143-147.	2.6	50
58	\hat{l}_{\pm} -Fe2O3 immobilized benzimidazolium tribromide as novel magnetically retrievable catalyst for one-pot synthesis of highly functionalized piperidines. Chinese Chemical Letters, 2016, 27, 1725-1730.	9.0	29
59	Preparation and characterization of WO ₃ bonded imidazolium sulfonic acid chloride as a novel and green ionic liquid catalyst for the synthesis of adipic acid. RSC Advances, 2016, 6, 99044-99052.	3.6	14
60	One-pot hydrothermal synthesis and characterization of CoFe 2 O 4 nanoparticles and its application as magnetically recoverable catalyst in oxidation of alcohols by periodic acid. Materials Chemistry and Physics, 2016, 181, 99-105.	4.0	31
61	Facile synthesis and characterization of zinc oxide nanoparticles and studies of their catalytic activity towards ultrasound-assisted degradation of metronidazole. Materials Letters, 2016, 168, 158-162.	2.6	43
62	Photocatalytic and antibacterial activities of gold and silver nanoparticles synthesized using biomass of Parkia roxburghii leaf. Journal of Photochemistry and Photobiology B: Biology, 2016, 154, 1-7.	3.8	111
63	Size-controlled synthesis of NiFe2O4 nanospheres via a PEG assisted hydrothermal route and their catalytic properties in oxidation of alcohols by periodic acid. Applied Surface Science, 2016, 370, 469-475.	6.1	36
64	Cetyltrimethylammonium Bromide Promoted Size-Tuning Synthesis of Rod-Like V ₂ O ₅ Nanoparticles and Their Catalytic Studies in Oxidative Esterification of Aldehydes. Nanoscience and Nanotechnology Letters, 2016, 8, 173-180.	0.4	1
65	Facile Synthesis of CuBi2O4 Microspheres for Catalytic Oxidation of Alcohols Photocatalyst and Supercapacitor Applications. Energy and Environment Focus, 2016, 5, 274-286.	0.3	0
66	Facile synthesis of \hat{l} ±-Fe2O3 nanoparticles and their catalytic activity in oxidation of benzyl alcohols with periodic acid. Catalysis Communications, 2015, 69, 48-54.	3.3	31
67	Green synthesis of gold nanoparticles using Pogestemon benghalensis (B) O. Ktz. leaf extract and studies of their photocatalytic activity in degradation of methylene blue. Materials Letters, 2015, 148, 37-40.	2.6	105
68	Facile synthesis of spinel CuCr2O4 nanoparticles and studies of their photocatalytic activity in degradation of some selected organic dyes. Journal of Alloys and Compounds, 2015, 648, 629-635.	5.5	52
69	Gold nanoparticle catalyzed intramolecular C–S bond formation/C–H bond functionalization/cyclization cascades. RSC Advances, 2015, 5, 57433-57436.	3.6	10
70	Hexamethonium bis(tribromide) (HMBTB) a recyclable and high bromine containing reagent. Tetrahedron Letters, 2015, 56, 5646-5650.	1.4	8
71	Green synthesis of silver nanoparticles using dried biomass of Diplazium esculentum (retz.) sw. and studies of their photocatalytic and anticoagulative activities. Journal of Molecular Liquids, 2015, 212, 813-817.	4.9	39
72	Novel Metal- and Mineral-Acid–Free Synthesis of Organic Ammonium Tribromides and Application of Ethylenephenanthrolium Bistribromide for Bromination of Active Methylene Group of 1,3-Diketones and β-Ketoesters. Synthetic Communications, 2015, 45, 714-726.	2.1	3

#	Article	IF	CITATIONS
73	Novel Protocol for the Synthesis of Organic Ammonium Tribromides and Investigation of 1,1′-(Ethane-1,2-diyl)dipiperidinium Bis(tribromide) in the Silylation of Alcohols and Thiols. Chemistry Letters, 2014, 43, 1545-1547.	1.3	7