Ying-Zhou Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8828008/publications.pdf

Version: 2024-02-01

623734 610901 27 588 14 24 citations g-index h-index papers 28 28 28 529 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Facile high yield, excellent catalytic performance of polyoxometalate-based lanthanide phosphine oxide complexes: Syntheses, structures, photocatalysis and THz spectra. Environmental Research, 2022, 206, 112267.	7.5	6
2	Nuclearity enlargement from [PW9O34@Ag51] to [(PW9O34)2@Ag72] and 2D and 3D network formation driven by bipyridines. Nature Communications, 2022, 13, 1802.	12.8	19
3	Ligand substitution in the osmium carbonyl cluster Os2(CO)8(µ3-SbPh)Os(CO)3(Cl)2: Towards derivatives of the osmostibine metalloligand. Journal of Organometallic Chemistry, 2021, 942, 121817.	1.8	1
4	Revealing the chirality origin and homochirality crystallization of Ag14 nanocluster at the molecular level. Nature Communications, 2021, 12, 4966.	12.8	57
5	Toward Controlled Syntheses of Diphosphine-Protected Homochiral Gold Nanoclusters through Precursor Engineering. ACS Nano, 2021, 15, 16019-16029.	14.6	40
6	Janus Cluster: Asymmetric Coverage of a Ag ₄₃ Cluster on the Symmetric Preyssler P ₅ W ₃₀ Polyoxometalate. Chemistry of Materials, 2021, 33, 9708-9714.	6.7	32
7	A comparative study on atomically precise Au nanoclusters as catalysts for the aldehyde–alkyne–amine (A3) coupling reaction: ligand effects on the nature of the catalysis and efficiency. RSC Advances, 2019, 9, 5475-5479.	3.6	8
8	The metallostibine Os2(CO)8(\hat{l} ¼-SbPh): A versatile donor precursor for antimony-containing heterometallic clusters. Journal of Organometallic Chemistry, 2018, 858, 53-61.	1.8	3
9	Stibine-protected Au ₁₃ nanoclusters: syntheses, properties and facile conversion to GSH-protected Au ₂₅ nanocluster. Chemical Science, 2018, 9, 8723-8730.	7.4	38
10	Expedient Synthesis of a Metallostibine Os2(CO)8(Âμ-SbPh): An Unusual and Strong Two-Electron-Donor Ligand. European Journal of Inorganic Chemistry, 2017, 2017, 2541-2546.	2.0	6
11	Isomerization of the osmium–tellurium cluster Os ₃ (Î⅓-TeR) ₂ (CO) ₁₀ : a kinetic and computational study. Dalton Transactions, 2016, 45, 7158-7162.	3.3	1
12	Ligand substitution in the osmium-antimony rings Os3(\hat{l} 4-SbPh2)2 (CO)10 and Os3(\hat{l} 4-SbPh2)3(Cl)(CO)9. Journal of Organometallic Chemistry, 2016, 820, 46-54.	1.8	9
13	Oxidative addition of halogen across an Os-Os or Os-Sb bond: Formation of five-membered osmium-antimony carbonyl rings. Journal of Organometallic Chemistry, 2016, 811, 66-73.	1.8	5
14	Raft-like osmium- and ruthenium-antimony carbonyl clusters. Journal of Organometallic Chemistry, 2016, 812, 217-225.	1.8	19
15	Synthesis and Reactivity of Ruthenium-Antimony Carbonyl Clusters. European Journal of Inorganic Chemistry, 2015, 2015, 3861-3872.	2.0	7
16	Os3(CO)11(BiPh3): The missing link in osmium–bismuth cluster chemistry. Journal of Organometallic Chemistry, 2015, 783, 46-48.	1.8	6
17	Oxidative Addition across Sb–H and Sb–Sb Bonds by an Osmium Carbonyl Cluster: Trapping the Intermediate. Organometallics, 2014, 33, 823-828.	2.3	14
18	Binuclear Oxidative Addition of Sb–Cl Bonds: A Facile Synthetic Route to Main Group–Transition Element Clusters and Rings. Organometallics, 2014, 33, 3867-3876.	2.3	13

#	Article	IF	CITATION
19	The zwitterionic radical and its neutral radical derivative with interesting magnetic properties. Synthetic Metals, 2012, 161, 2708-2713.	3.9	12
20	Magnetic and luminescent properties of Cd(<scp>ii</scp>)- and Fe(<scp>ii</scp>)-anion radical frameworks: various networks or structures influenced by metal ion sizes or in situ forming mechanisms of anion radical ligand. CrystEngComm, 2012, 14, 1439-1448.	2.6	19
21	Stacking-induced white-light and blue-light phosphorescence from purely organic radical materials. Journal of Materials Chemistry, 2011, 21, 18520.	6.7	54
22	Direct arylation of unactivated aromatic C–H bonds catalyzed by a stable organic radical. Chemical Communications, 2011, 47, 11766.	4.1	90
23	3-Carbaldehyde-substituted 2,3′-biimidazo[1,2-a]pyridin-2′-one radicals: Interesting π-stacking structures and magnetic properties. Synthetic Metals, 2011, 161, 713-717.	3.9	21
24	New metal-anion radical framework materials: CoII compounds showing ferromagnetic to antiferromagnetic phase transition at about 344 K, and ZnII compounds exhibiting terminal anion ligand induced direct white-light-emission. Dalton Transactions, 2011, 40, 4131.	3.3	33
25	Isostructural Metal–Anion Radical Coordination Polymers with Tunable Phosphorescent Colors (Deep Blue, Blue, Yellow, and White) Induced by Terminal Anions and Metal Cations. Chemistry - A European Journal, 2011, 17, 12495-12501.	3.3	22
26	Phosphorescent iridium (III) 2-phenylpyridine complexes: Efficient color tuning by novel ancillary ligands. Inorganic Chemistry Communication, 2010, 13, 179-182.	3.9	11
27	New zwitterionic radical salts: dimers in solution and unusual magnetic and luminescent properties in the solid state. Chemical Communications, 2010, 46, 3194.	4.1	42