
Ran Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8827988/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of post bonding heat treatment on the local strain evolution of transient liquid phase bonded RAFM steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 143008.	2.6	4
2	Chemical heterogeneity enables austenite stabilization in a Si-/Al-free Fe-0.2C-2Mn steel. Scripta Materialia, 2022, 218, 114822.	2.6	6
3	Fundamentals and application of solid-state phase transformations for advanced high strength steels containing metastable retained austenite. Materials Science and Engineering Reports, 2021, 143, 100590.	14.8	100
4	Critical role of Lüders banding in hydrogen embrittlement susceptibility of medium Mn steels. Scripta Materialia, 2021, 190, 32-37.	2.6	24
5	Effect of solution cooling rate on microstructure evolution and mechanical properties of Ni-based superalloy ATI 718Plus. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 812, 141113.	2.6	16
6	Chemical heterogeneity enhances hydrogen resistance in high-strength steels. Nature Materials, 2021, 20, 1629-1634.	13.3	83
7	Microstructure and mechanical properties of a novel medium Mn steel with Cr and Mo microalloying. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 825, 141926.	2.6	12
8	How chemical boundary engineering can produce cheap, ultra-strong steels. Proceedings of the Institution of Civil Engineers: Civil Engineering, 2020, 173, 102-102.	0.3	2
9	Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels. Science Advances, 2020, 6, eaay1430.	4.7	120
10	Stabilizing austenite via a core-shell structure in the medium Mn steels. Scripta Materialia, 2019, 166, 68-72.	2.6	40
11	Improving the ductility of ultrahigh-strength medium Mn steels via introducing pre-existed austenite acting as a "reservoir―for Mn atoms. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 749, 235-240.	2.6	26
12	Thermo-kinetic design of retained austenite in advanced high strength steels. Acta Materialia, 2018, 152, 288-299.	3.8	40
13	Ultrafine-Grained Multiphase Steels with Different Microstructural Constitutions Fabricated Through Annealing of Tempered and Deformed Martensite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 1439-1443.	1.1	3
14	Effect of pre-existed austenite on austenite reversion and mechanical behavior of an Fe-0.2C-8Mn-2Al medium Mn steel. Acta Materialia, 2018, 147, 59-69.	3.8	137
15	Elucidating the effect of Mn partitioning on interface migration and carbon partitioning during Quenching and Partitioning of the Fe-C-Mn-Si steels: Modeling and experiments. Acta Materialia, 2018, 144, 666-678.	3.8	60
16	Effect of Heat Treatment on Microstructure and Mechanical Properties of Quenching and Partitioning Steel. Acta Metallurgica Sinica (English Letters), 2018, 31, 216-224.	1.5	16
17	Two-body abrasion wear mechanism of super bainitic steel. Materials Science and Technology, 2017, 33, 893-898.	0.8	19
18	A cyclic austenite reversion treatment for stabilizing austenite in the medium manganese steels. Scripta Materialia, 2017, 136, 6-10.	2.6	35

Ran Ding

#	Article	IF	CITATIONS
19	Effects of Mn and Cr contents on microstructures and mechanical properties of low temperature bainitic steel. Journal of Iron and Steel Research International, 2017, 24, 290-295.	1.4	22
20	Quenching and partitioning steel produced through hot rolling, direct quenching and annealing. Materials Science and Technology, 2016, 32, 1605-1612.	0.8	14
21	Effect of ultragrain refinement on quenching and partitioning steels manufactured by a novel method. Materials and Design, 2015, 87, 640-649.	3.3	33
22	Effect of intercritical temperature on quenching and partitioning steels originated from martensitic pre-microstructure. Journal of Materials Research, 2014, 29, 2525-2533.	1.2	20
23	A New Type of Quenching and Partitioning Processing Developed from Martensitic Pre-microstructure. Materials and Manufacturing Processes, 2014, 29, 704-709.	2.7	16
24	A novel design to enhance the amount of retained austenite and mechanical properties in low-alloyed steel. Scripta Materialia, 2014, 88, 21-24.	2.6	83
25	Effect of Nb on Microstructure and Mechanical Properties in Non-magnetic High Manganese Steel. Journal of Iron and Steel Research International, 2014, 21, 600-605.	1.4	11
26	Microstructure and Mechanical Properties of TRIP-Aided Steels with Different Heat Treatments. Materials Science Forum, 0, 817, 439-443.	0.3	2
27	Wear Resistance Research of Advanced High Strength Steels. Materials Science Forum, 0, 850, 197-201.	0.3	1