Alberto Lpez-Ortega

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8827786/alberto-lopez-ortega-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,746 41 23 41 h-index g-index citations papers 1,965 9.2 43 4.55 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
41	Nanoparticle Size Distribution and Surface Effects on the Thermal Dependence of Magnetic Anisotropy. <i>Journal of Physical Chemistry C</i> , 2022 , 126, 1581-1589	3.8	2
40	Probing the meta-stability of oxide core/shell nanoparticle systems at atomic resolution. <i>Chemical Engineering Journal</i> , 2021 , 405, 126820	14.7	4
39	A caging strategy for tuning the magneto-optical properties of cobalt ferrite using a single plasmonic nanoparticle. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 5098-5104	7.1	Ο
38	Direct Evidence of a Graded Magnetic Interface in Bimagnetic Core/Shell Nanoparticles Using Electron Magnetic Circular Dichroism (EMCD). <i>Nano Letters</i> , 2021 , 21, 6923-6930	11.5	2
37	Enhanced magnetic modulation of light polarization exploiting hybridization with multipolar dark plasmons in magnetoplasmonic nanocavities. <i>Light: Science and Applications</i> , 2020 , 9, 49	16.7	23
36	Ligand-induced reduction concerted with coating by atomic layer deposition on the example of TiO-coated magnetite nanoparticles. <i>Chemical Science</i> , 2019 , 10, 2171-2178	9.4	8
35	Precise Size Control of the Growth of FeO Nanocubes over a Wide Size Range Using a Rationally Designed One-Pot Synthesis. <i>ACS Nano</i> , 2019 , 13, 7716-7728	16.7	41
34	Zinc blende and wurtzite CoO polymorph nanoparticles: Rational synthesis and commensurate and incommensurate magnetic order. <i>Applied Materials Today</i> , 2019 , 16, 322-331	6.6	3
33	Role of Zn2+ Substitution on the Magnetic, Hyperthermic, and Relaxometric Properties of Cobalt Ferrite Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 6148-6157	3.8	41
32	Unravelling the Elusive Antiferromagnetic Order in Wurtzite and Zinc Blende CoO Polymorph Nanoparticles. <i>Small</i> , 2018 , 14, e1703963	11	7
31	Enhanced Ultrafast Nonlinear Optical Response in Ferrite Core/Shell Nanostructures with Excellent Optical Limiting Performance. <i>Small</i> , 2018 , 14, 1701001	11	38
30	Clustering analysis strategies for electron energy loss spectroscopy (EELS). <i>Ultramicroscopy</i> , 2018 , 185, 42-48	3.1	13
29	Plasmon induced magneto-optical enhancement in metallic Ag/FeCo core/shell nanoparticles synthesized by colloidal chemistry. <i>Nanoscale</i> , 2018 , 10, 18672-18679	7.7	24
28	Atomic-Scale Determination of Cation Inversion in Spinel-Based Oxide Nanoparticles. <i>Nano Letters</i> , 2018 , 18, 5854-5861	11.5	13
27	Simultaneous Local Heating/Thermometry Based on Plasmonic Magnetochromic Nanoheaters. <i>Small</i> , 2018 , 14, e1800868	11	24
26	Combining X-Ray Whole Powder Pattern Modeling, Rietveld and Pair Distribution Function Analyses as a Novel Bulk Approach to Study Interfaces in Heteronanostructures: Oxidation Front in FeO/Fe O Core/Shell Nanoparticles as a Case Study. <i>Small</i> , 2018 , 14, e1800804	11	8
25	Topotaxial Phase Transformation in Cobalt Doped Iron Oxide Core/Shell Hard Magnetic Nanoparticles. <i>Chemistry of Materials</i> , 2017 , 29, 1279-1289	9.6	23

(2012-2017)

Suppressing the Thermal and Ultraviolet Sensitivity of Kevlar by Infiltration and Hybridization with ZnO. <i>Chemistry of Materials</i> , 2017 , 29, 10068-10074	9.6	32
Galvanic Replacement onto Complex Metal-Oxide Nanoparticles: Impact of Water or Other Oxidizers in the Formation of either Fully Dense Onion-like or Multicomponent Hollow MnOx/FeOx Structures. <i>Chemistry of Materials</i> , 2016 , 28, 8025-8031	9.6	22
Energy Product Enhancement in Imperfectly Exchange-Coupled Nanocomposite Magnets. <i>Advanced Electronic Materials</i> , 2016 , 2, 1500365	6.4	37
3D Visualization of the Iron Oxidation State in FeO/Fe3O4 Core-Shell Nanocubes from Electron Energy Loss Tomography. <i>Nano Letters</i> , 2016 , 16, 5068-73	11.5	47
Strongly Exchange Coupled Core Shell Nanoparticles with High Magnetic Anisotropy: A Strategy toward Rare-Earth-Free Permanent Magnets. <i>Chemistry of Materials</i> , 2016 , 28, 4214-4222	9.6	71
Electron energy-loss spectroscopic tomography of FexCo(3-x)O4 impregnated Co3O4 mesoporous particles: unraveling the chemical information in three dimensions. <i>Analyst, The</i> , 2016 , 141, 4968-72	5	2
Exploring the Magnetic Properties of Cobalt-Ferrite Nanoparticles for the Development of a Rare-Earth-Free Permanent Magnet. <i>Chemistry of Materials</i> , 2015 , 27, 4048-4056	9.6	180
Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. <i>Physics Reports</i> , 2015 , 553, 1-32	27.7	310
Origin of the large dispersion of magnetic properties in nanostructured oxides: Fe(x)O/Fe3O4 nanoparticles as a case study. <i>Nanoscale</i> , 2015 , 7, 3002-15	7.7	63
Oxide Wizard: an EELS application to characterize the white lines of transition metal edges. <i>Microscopy and Microanalysis</i> , 2014 , 20, 698-705	0.5	35
Direct evidence for an interdiffused intermediate layer in bi-magnetic core-shell nanoparticles. <i>Nanoscale</i> , 2014 , 6, 11911-20	7.7	39
Correlating material-specific layers and magnetic distributions within onion-like Fe3O4/MnO/EMn2O3 core/shell nanoparticles. <i>Journal of Applied Physics</i> , 2013 , 113, 17B531	2.5	18
Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles. <i>Nature Communications</i> , 2013 , 4, 2960	17.4	132
Resolving material-specific structures within FeDIMnDILore shell nanoparticles using anomalous small-angle X-ray scattering. ACS Nano, 2013, 7, 921-31	16.7	35
Controlled 3D-coating of the pores of highly ordered mesoporous antiferromagnetic Co3O4 replicas with ferrimagnetic Fe(x)Co(3-x)O4 nanolayers. <i>Nanoscale</i> , 2013 , 5, 5561-7	7.7	12
Distinguishing the core from the shell in MnO(x)/MnO(y) and FeO(x)/MnO(x) core/shell nanoparticles through quantitative electron energy loss spectroscopy (EELS) analysis. <i>Micron</i> , 2012 , 43, 30-6	2.3	33
EEL spectroscopic tomography: towards a new dimension in nanomaterials analysis. <i>Ultramicroscopy</i> , 2012 , 122, 12-8	3.1	32
Strongly exchange coupled inverse ferrimagnetic soft/hard, Mn(x)Fe(3-x)O4/Fe(x)Mn(3-x)O4, core/shell heterostructured nanoparticles. <i>Nanoscale</i> , 2012 , 4, 5138-47	7.7	66
	ZnO. Chemistry of Materials, 2017, 29, 10068-10074 Galvanic Replacement onto Complex Metal-Oxide Nanoparticles: Impact of Water or Other Oxidizers in the Formation of either Fully Dense Onion-like or Multicomponent Hollow MnOx/FeOx Structures. Chemistry of Materials, 2016, 28, 8025-8031 Energy Product Enhancement in Imperfectly Exchange-Coupled Nanocomposite Magnets. Advanced Electronic Materials, 2016, 21, 500365 3D Visualization of the Iron Oxidation State in FeO/Fe3O4 Core-Shell Nanocubes from Electron Energy Loss Tomography. Nano Letters, 2016, 16, 5068-73 Strongly Exchange Coupled Core Shell Nanoparticles with High Magnetic Anisotropy: A Strategy toward Rare-Earth-Free Permanent Magnets. Chemistry of Materials, 2016, 28, 4214-4222 Electron energy-loss spectroscopic tomography of FexCo(3-x)O4 impregnated Co3O4 mesoporous particles: unraveling the chemical information in three dimensions. Analyst, The, 2016, 141, 4968-72 Exploring the Magnetic Properties of Cobalt-Ferrite Nanoparticles for the Development of a Rare-Earth-Free Permanent Magnet. Chemistry of Materials, 2015, 27, 4048-4056 Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Physics Reports, 2015, 553, 1-32 Origin of the large dispersion of magnetic properties in nanostructured oxides: Fe(x)O/Fe3O4 nanoparticles as a case study. Nanoscale, 2015, 7, 3002-15 Oxide Wizard: an EELS application to characterize the white lines of transition metal edges. Microscopy and Microanalysis, 2014, 20, 698-705 Direct evidence for an interdiffused intermediate layer in bi-magnetic core-shell nanoparticles. Nanoscale, 2014, 6, 11911-20 Correlating material-specific layers and magnetic distributions within onion-like Fe3O4/MnO/BMn2O3 core/shell nanoparticles. Journal of Applied Physics, 2013, 113, 178531 Robust antiferromagnetic reporting in hard-soft bi-magnetic core/shell nanoparticles using anomalous small-angle X-ray scattering. ACS Nano, 2013, 7, 921-31 Controlled 3D-coating of the pores of high	2nO. Chemistry of Materials, 2017, 29, 10068-10074 Galvanic Replacement onto Complex Metal-Oxide Nanoparticles: Impact of Water or Other Oxidizers in the Formation of either Fully Dense Onion-like or Multicomponent Hollow MnOx/FeOx Structures. Chemistry of Materials, 2016, 28, 8025-8031 Energy Product Enhancement in Imperfectly Exchange-Coupled Nanocomposite Magnets. Advanced Electronic Materials, 2016, 2, 1500365 3D Visualization of the Iron Oxidation State in FeO/Fe3O4 Core-Shell Nanocubes from Electron Energy Loss Tomography. Nano Letters, 2016, 16, 5068-73 Strongly Exchange Coupled Core Shell Nanoparticles with High Magnetic Anisotropy: A Strategy toward Rare-Earth-Free Permanent Magnets. Chemistry of Materials, 2016, 28, 4214-4222 Electron energy-loss spectroscopic tomography of FexCo(3-x)O4 impregnated Co3O4 mesoporous particles: unraveling the chemical information in three dimensions. Analyst. The, 2016, 141, 4968-72 Exploring the Magnetic Properties of Cobalt-Ferrite Nanoparticles for the Development of a Rare-Earth-Free Permanent Magnet. Chemistry of Materials, 2015, 27, 4048-4056 Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Physics Reports, 2015, 553, 1-32 Origin of the large dispersion of magnetic properties in nanostructured oxides: Fe(x)O/Fe3O4 nanoparticles as a case study. Nanoscale, 2015, 7, 3002-15 Oxide Wilzard: an EELS application to characterize the white lines of transition metal edges. Nanoscale, 2014, 6, 11911-20 Correlating material-specific layers and magnetic distributions within onion-like Fe3O4/MnO/Rhn2O3 core/shell nanoparticles. Journal of Applied Physics, 2013, 113, 178531 Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles. Nature Communications, 2013, 4, 2960 Resolving material-specific structures within FeD[IMnOttore]shell nanoparticles using anomalous small-angle X-ray scattering. ACS Nano, 2013, 7, 921-31 Controlled 3D-coating of the pores of highly ordered mesoporous anti

Alberto L?ez-Ortega

6	Two-, three-, and four-component magnetic multilayer onion nanoparticles based on iron oxides and manganese oxides. <i>Journal of the American Chemical Society</i> , 2011 , 133, 16738-41	16.4	50
5	Role of the oxygen partial pressure in the formation of composite Co-CoO nanoparticles by reactive aggregation. <i>Journal of Nanoparticle Research</i> , 2011 , 13, 4583-4590	2.3	6
4	Synthesis of compositionally graded nanocast NiO/NiCo2O4/Co3O4 mesoporous composites with tunable magnetic properties. <i>Journal of Materials Chemistry</i> , 2010 , 20, 7021		73
3	Magnetic Measurements as a Sensitive Tool for Studying Dehydrogenation Processes in Hydrogen Storage Materials. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 16818-16822	3.8	2
2	Size-dependent passivation shell and magnetic properties in antiferromagnetic/ferrimagnetic core/shell MnO nanoparticles. <i>Journal of the American Chemical Society</i> , 2010 , 132, 9398-407	16.4	100
1	Magnetic proximity effect features in antiferromagnetic/ferrimagnetic core-shell nanoparticles. <i>Physical Review Letters</i> , 2009 , 102, 247201	7.4	74