Sandeep Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8827755/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1535-H1543.	1.5	396
2	Shear Stress Stimulates Phosphorylation of Endothelial Nitric-oxide Synthase at Ser1179 by Akt-independent Mechanisms. Journal of Biological Chemistry, 2002, 277, 3388-3396.	1.6	395
3	Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H2290-H2297.	1.5	392
4	Biomechanical factors in atherosclerosis: mechanisms and clinical implications. European Heart Journal, 2014, 35, 3013-3020.	1.0	359
5	Bone Morphogenic Protein 4 Produced in Endothelial Cells by Oscillatory Shear Stress Induces Monocyte Adhesion by Stimulating Reactive Oxygen Species Production From a Nox1-Based NADPH Oxidase. Circulation Research, 2004, 95, 773-779.	2.0	350
6	Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. American Journal of Physiology - Cell Physiology, 2003, 285, C499-C508.	2.1	326
7	Bone Morphogenic Protein 4 Produced in Endothelial Cells by Oscillatory Shear Stress Stimulates an Inflammatory Response. Journal of Biological Chemistry, 2003, 278, 31128-31135.	1.6	262
8	Oscillatory Shear Stress Stimulates Endothelial Production of O2- from p47 -dependent NAD(P)H Oxidases, Leading to Monocyte Adhesion. Journal of Biological Chemistry, 2003, 278, 47291-47298.	1.6	261
9	Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. Journal of Clinical Investigation, 2014, 124, 3187-3199.	3.9	260
10	Role of Flow-Sensitive microRNAs in Endothelial Dysfunction and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2206-2216.	1.1	230
11	Altered Shear Stress Stimulates Upregulation of Endothelial VCAM-1 and ICAM-1 in a BMP-4– and TGF-β1–Dependent Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 254-260.	1.1	212
12	Shear stress stimulates phosphorylation of eNOS at Ser ⁶³⁵ by a protein kinase A-dependent mechanism. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H1819-H1828.	1.5	205
13	The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nature Communications, 2013, 4, 3000.	5.8	198
14	MicroRNA-663 upregulated by oscillatory shear stress plays a role in inflammatory response of endothelial cells. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1762-H1769.	1.5	186
15	KLF2 and KLF4 control endothelial identity and vascular integrity. JCI Insight, 2017, 2, e91700.	2.3	171
16	Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1113-H1122.	1.5	159
17	Multifunctional Nanoparticles Facilitate Molecular Targeting and miRNA Delivery to Inhibit Atherosclerosis in ApoE ^{–/–} Mice. ACS Nano, 2015, 9, 8885-8897.	7.3	150
18	Elevated Cyclic Stretch Induces Aortic Valve Calcification in a Bone Morphogenic Protein-Dependent Manner. American Journal of Pathology, 2010, 177, 49-57.	1.9	138

#	Article	IF	CITATIONS
19	Discovery of novel mechanosensitive genes in vivo using mouse carotid artery endothelium exposed to disturbed flow. Blood, 2010, 116, e66-e73.	0.6	136
20	Fluid Mechanics, Arterial Disease, and Gene Expression. Annual Review of Fluid Mechanics, 2014, 46, 591-614.	10.8	134
21	Bone Morphogenic Protein Antagonists Are Coexpressed With Bone Morphogenic Protein 4 in Endothelial Cells Exposed to Unstable Flow In Vitro in Mouse Aortas and in Human Coronary Arteries. Circulation, 2007, 116, 1258-1266.	1.6	120
22	NFâ€₽̂B mediated miRâ€26a regulation in cardiac fibrosis. Journal of Cellular Physiology, 2013, 228, 1433-1442.	2.0	119
23	Bone Morphogenic Protein-4 Induces Hypertension in Mice. Circulation, 2006, 113, 2818-2825.	1.6	117
24	An Ex Vivo Study of the Biological Properties of Porcine Aortic Valves in Response to Circumferential Cyclic Stretch. Annals of Biomedical Engineering, 2006, 34, 1655-1665.	1.3	110
25	Endothelial Reprogramming by Disturbed Flow Revealed by Single-Cell RNA and Chromatin Accessibility Study. Cell Reports, 2020, 33, 108491.	2.9	109
26	Peroxiredoxin 2 Deficiency Exacerbates Atherosclerosis in Apolipoprotein E–Deficient Mice. Circulation Research, 2011, 109, 739-749.	2.0	107
27	Circulating miRNAs as Potential Marker for Pulmonary Hypertension. PLoS ONE, 2013, 8, e64396.	1.1	106
28	Expression of cathepsin K is regulated by shear stress in cultured endothelial cells and is increased in endothelium in human atherosclerosis. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1479-H1486.	1.5	104
29	Discovery of shear- and side-specific mRNAs and miRNAs in human aortic valvular endothelial cells. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H856-H867.	1.5	96
30	Role of NADPH Oxidases in Disturbed Flow- and BMP4- Induced Inflammation and Atherosclerosis. Antioxidants and Redox Signaling, 2006, 8, 1609-1619.	2.5	92
31	Protein kinase B/Akt activates c-Jun NH ₂ -terminal kinase by increasing NO production in response to shear stress. Journal of Applied Physiology, 2001, 91, 1574-1581.	1.2	91
32	Aortic Valve: Mechanical Environment and Mechanobiology. Annals of Biomedical Engineering, 2013, 41, 1331-1346.	1.3	91
33	Prevention of Abdominal Aortic Aneurysm by Anti–MicroRNA-712 or Anti–MicroRNA-205 in Angiotensin Il–Infused Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1412-1421.	1.1	90
34	High glucose-induced Ca2+ overload and oxidative stress contribute to apoptosis of cardiac cells through mitochondrial dependent and independent pathways. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 907-920.	1.1	84
35	Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis. Vascular Pharmacology, 2019, 114, 76-92.	1.0	84
36	Multigenerational Undernutrition Increases Susceptibility to Obesity and Diabetes that Is Not Reversed after Dietary Recuperation. Cell Metabolism, 2015, 22, 312-319.	7.2	83

#	Article	IF	CITATIONS
37	Cytoprotective and antioxidant role of diallyl tetrasulfide on cadmium induced renal injury: An in vivo and in vitro study. Life Sciences, 2007, 80, 650-658.	2.0	81
38	Laminar Shear Stress Up-regulates Peroxiredoxins (PRX) in Endothelial Cells. Journal of Biological Chemistry, 2008, 283, 1622-1627.	1.6	81
39	Anti-Inflammatory and Antiatherogenic Role of BMP Receptor II in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1350-1359.	1.1	81
40	HuR regulates the expression of stress-sensitive genes and mediates inflammatory response in human umbilical vein endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6858-6863.	3.3	80
41	Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Advanced Drug Delivery Reviews, 2021, 170, 142-199.	6.6	80
42	Mechanosensitive PPAP2B Regulates Endothelial Responses to Atherorelevant Hemodynamic Forces. Circulation Research, 2015, 117, e41-e53.	2.0	75
43	Laminar Shear Inhibits Tubule Formation and Migration of Endothelial Cells by an Angiopoietin-2–Dependent Mechanism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2150-2156.	1.1	74
44	Target accessibility and signal specificity in live-cell detection of BMP-4 mRNA using molecular beacons. Nucleic Acids Research, 2008, 36, e30-e30.	6.5	74
45	Accelerated atherosclerosis development in C57Bl6 mice by overexpressing AAV-mediated PCSK9 and partial carotid ligation. Laboratory Investigation, 2017, 97, 935-945.	1.7	72
46	Thymosin Beta 4 Prevents Oxidative Stress by Targeting Antioxidant and Anti-Apoptotic Genes in Cardiac Fibroblasts. PLoS ONE, 2011, 6, e26912.	1.1	71
47	Circulating miRNA as novel markers for diastolic dysfunction. Molecular and Cellular Biochemistry, 2013, 376, 33-40.	1.4	70
48	Animal, <i>In Vitro</i> , and <i>Ex Vivo</i> Models of Flow-Dependent Atherosclerosis: Role of Oxidative Stress. Antioxidants and Redox Signaling, 2011, 15, 1433-1448.	2.5	68
49	Piperlongumine inhibits atherosclerotic plaque formation and vascular smooth muscle cell proliferation by suppressing PDGF receptor signaling. Biochemical and Biophysical Research Communications, 2012, 427, 349-354.	1.0	68
50	Laminar Shear Stress Inhibits Cathepsin L Activity in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1784-1790.	1.1	67
51	Design of an Ex Vivo Culture System to Investigate the Effects of Shear Stress on Cardiovascular Tissue. Journal of Biomechanical Engineering, 2008, 130, 035001.	0.6	67
52	Affinity-Driven Design of Cargo-Switching Nanoparticles to Leverage a Cholesterol-Rich Microenvironment for Atherosclerosis Therapy. ACS Nano, 2020, 14, 6519-6531.	7.3	67
53	Role of Noncoding RNAs in the Pathogenesis of Abdominal Aortic Aneurysm. Circulation Research, 2019, 124, 619-630.	2.0	66
54	Vascular Semaphorin 7A Upregulation by Disturbed Flow Promotes Atherosclerosis Through Endothelial β1 Integrin. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 335-343.	1.1	62

#	Article	IF	CITATIONS
55	The novel coronary artery disease risk gene <i>JCAD/KIAA1462</i> promotes endothelial dysfunction and atherosclerosis. European Heart Journal, 2019, 40, 2398-2408.	1.0	60
56	The role of epigenetics in the endothelial cell shear stress response and atherosclerosis. International Journal of Biochemistry and Cell Biology, 2015, 67, 167-176.	1.2	54
57	Disturbed Flow Increases UBE2C (Ubiquitin E2 Ligase C) via Loss of miR-483-3p, Inducing Aortic Valve Calcification by the pVHL (von Hippel-Lindau Protein) and HIF-11± (Hypoxia-Inducible Factor-11±) Pathway in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 467-481.	1.1	54
58	A Model of Disturbed Flow-Induced Atherosclerosis in Mouse Carotid Artery by Partial Ligation and a Simple Method of RNA Isolation from Carotid Endothelium. Journal of Visualized Experiments, 2010, , .	0.2	53
59	The role of endothelial mechanosensitive genes in atherosclerosis andÂomics approaches. Archives of Biochemistry and Biophysics, 2016, 591, 111-131.	1.4	53
60	Downregulation of Bone Morphogenetic Protein 4 Expression in Coronary Arterial Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 776-782.	1.1	51
61	GTP Cyclohydrolase I Phosphorylation and Interaction With GTP Cyclohydrolase Feedback Regulatory Protein Provide Novel Regulation of Endothelial Tetrahydrobiopterin and Nitric Oxide. Circulation Research, 2010, 106, 328-336.	2.0	51
62	Tetrahydrobiopterin Deficiency and Nitric Oxide Synthase Uncoupling Contribute to Atherosclerosis Induced by Disturbed Flow. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1547-1554.	1.1	50
63	The Effects of Combined Cyclic Stretch and Pressure on the Aortic Valve Interstitial Cell Phenotype. Annals of Biomedical Engineering, 2011, 39, 1654-1667.	1.3	49
64	AIBP Limits Angiogenesis Through Î ³ -Secretase-Mediated Upregulation of Notch Signaling. Circulation Research, 2017, 120, 1727-1739.	2.0	49
65	Disturbed flow induces systemic changes in metabolites in mouse plasma: a metabolomics study using ApoE ^{â^'/â^'} mice with partial carotid ligation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R62-R72.	0.9	48
66	Disturbed Flow Promotes Arterial Stiffening Through Thrombospondin-1. Circulation, 2017, 136, 1217-1232.	1.6	48
67	Flow-dependent expression of ectonucleotide tri(di)phosphohydrolase-1 and suppression of atherosclerosis. Journal of Clinical Investigation, 2015, 125, 3027-3036.	3.9	47
68	Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells. Nature Communications, 2018, 9, 2292.	5.8	44
69	Identification of side- and shear-dependent microRNAs regulating porcine aortic valve pathogenesis. Scientific Reports, 2016, 6, 25397.	1.6	43
70	Cadmium induced mitochondrial injury and apoptosis in vero cells: Protective effect of diallyl tetrasufide from garlic. International Journal of Biochemistry and Cell Biology, 2007, 39, 161-170.	1.2	42
71	3D Imaging and Quantitative Analysis of Vascular Networks: A Comparison of Ultramicroscopy and Micro-Computed Tomography. Theranostics, 2018, 8, 2117-2133.	4.6	41
72	Cardiac-specific genetic inhibition of nuclear factor-κB prevents right ventricular hypertrophy induced by monocrotaline. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1655-H1666.	1.5	40

#	Article	IF	CITATIONS
73	Shear-Sensitive Genes in Aortic Valve Endothelium. Antioxidants and Redox Signaling, 2016, 25, 401-414.	2.5	40
74	The histone demethylase JMJD2B regulates endothelial-to-mesenchymal transition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4180-4187.	3.3	39
75	Thymosin Beta 4 Protects Cardiomyocytes from Oxidative Stress by Targeting Anti-Oxidative Enzymes and Anti-Apoptotic Genes. PLoS ONE, 2012, 7, e42586.	1.1	39
76	Dynamic Immune Cell Accumulation During Flow-Induced Atherogenesis in Mouse Carotid Artery. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 623-632.	1.1	38
77	Delivery of Antiâ€microRNAâ€712 to Inflamed Endothelial Cells Using Poly(<i>β</i> â€amino ester) Nanoparticles Conjugated with VCAMâ€1 Targeting Peptide. Advanced Healthcare Materials, 2021, 10, e2001894.	3.9	38
78	Mechanical forces regulate endothelial-to-mesenchymal transition and atherosclerosis via an Alk5-Shc mechanotransduction pathway. Science Advances, 2021, 7, .	4.7	37
79	Inhibition of nuclear factor κB regresses cardiac hypertrophy by modulating the expression of extracellular matrix and adhesion molecules. Free Radical Biology and Medicine, 2011, 50, 206-215.	1.3	34
80	Azelnidipine prevents cardiac dysfunction in streptozotocin-diabetic rats by reducing intracellular calcium accumulation, oxidative stress and apoptosis. Cardiovascular Diabetology, 2011, 10, 97.	2.7	33
81	Development of immortalized mouse aortic endothelial cell lines. Vascular Cell, 2014, 6, 7.	0.2	33
82	Mechanosensitive microRNA-181b Regulates Aortic Valve Endothelial Matrix Degradation by Targeting TIMP3. Cardiovascular Engineering and Technology, 2018, 9, 141-150.	0.7	32
83	Thymosin \hat{l}^24 and cardiac protection: implication in inflammation and fibrosis. Annals of the New York Academy of Sciences, 2012, 1269, 84-91.	1.8	30
84	ZBTB46 is a shear-sensitive transcription factor inhibiting endothelial cell proliferation via gene expression regulation of cell cycle proteins. Laboratory Investigation, 2019, 99, 305-318.	1.7	30
85	Cardiotoxicity of calmidazolium chloride is attributed to calcium aggravation, oxidative and nitrosative stress, and apoptosis. Free Radical Biology and Medicine, 2009, 47, 699-709.	1.3	27
86	Optimization of Isolation and Functional Characterization of Primary Murine Aortic Endothelial Cells. Endothelium: Journal of Endothelial Cell Research, 2003, 10, 103-109.	1.7	26
87	Laminar shear stress upregulates endothelial Ca ²⁺ -activated K ⁺ channels KCa2.3 and KCa3.1 via a Ca ²⁺ /calmodulin-dependent protein kinase kinase/Akt/p300 cascade. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H484-H493.	1.5	26
88	Azelnidipine protects myocardium in hyperglycemia-induced cardiac damage. Cardiovascular Diabetology, 2010, 9, 82.	2.7	25
89	Flow-dependent regulation of genome-wide mRNA and microRNA expression in endothelial cells in vivo. Scientific Data, 2014, 1, 140039.	2.4	25
90	Disturbed Flow Enhances Inflammatory Signaling and Atherogenesis by Increasing Thioredoxin-1 Level in Endothelial Cell Nuclei. PLoS ONE, 2014, 9, e108346.	1.1	25

#	Article	IF	CITATIONS
91	Location, location, location: Beneficial effects of autologous fat transplantation. Scientific Reports, 2011, 1, 81.	1.6	22
92	Recent Progress in in vitro Models for Atherosclerosis Studies. Frontiers in Cardiovascular Medicine, 2021, 8, 790529.	1.1	21
93	Delivery of siRNA to Endothelial Cells In Vivo Using Lysine/Histidine Oligopeptide-Modified Poly(β-amino) Tj ETQq1	1 0.7843 0.7	314 rgBT /O
94	Stable flow-induced expression of KLK10 inhibits endothelial inflammation and atherosclerosis. ELife, 2022, 11, .	2.8	19
95	Discovery of novel peptides targeting pro-atherogenic endothelium in disturbed flow regions -Targeted siRNA delivery to pro-atherogenic endothelium in vivo. Scientific Reports, 2016, 6, 25636.	1.6	17
96	Disturbed Flow Induces Atherosclerosis by Annexin A2-Mediated Integrin Activation. Circulation Research, 2020, 127, 1091-1093.	2.0	17
97	Targeted Delivery of Antiâ€miRâ€712 by VCAM1â€Binding Au Nanospheres for Atherosclerosis Therapy. ChemNanoMat, 2016, 2, 400-406.	1.5	16
98	Hypoxia inducible factor $1\hat{l}$ ± inhibitor PX-478 reduces atherosclerosis in mice. Atherosclerosis, 2022, 344, 20-30.	0.4	16
99	Omicsâ€based approaches to understand mechanosensitive endothelial biology and atherosclerosis. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2016, 8, 378-401.	6.6	15
100	<i>Cassia auriculata</i> : Aspects of Safety Pharmacology and Drug Interaction. Evidence-based Complementary and Alternative Medicine, 2011, 2011, 1-8.	0.5	13
101	Combined LXR and RXR Agonist Therapy Increases ABCA1 Protein Expression and Enhances ApoAl-Mediated Cholesterol Efflux in Cultured Endothelial Cells. Metabolites, 2021, 11, 640.	1.3	13
102	miR-214 is Stretch-Sensitive in Aortic Valve and Inhibits Aortic Valve Calcification. Annals of Biomedical Engineering, 2019, 47, 1106-1115.	1.3	12
103	Micro-CT Technique Is Well Suited for Documentation of Remodeling Processes in Murine Carotid Arteries. PLoS ONE, 2015, 10, e0130374.	1.1	11
104	The flagellin-TLR5-Nox4 axis promotes the migration of smooth muscle cells in atherosclerosis. Experimental and Molecular Medicine, 2019, 51, 1-13.	3.2	10
105	Conditional Deoxyribozyme–Nanoparticle Conjugates for miRNA-Triggered Gene Regulation. ACS Applied Materials & Interfaces, 2020, 12, 37851-37861.	4.0	10
106	Targeting mechanosensitive endothelial TXNDC5 to stabilize eNOS and reduce atherosclerosis in vivo. Science Advances, 2022, 8, eabl8096.	4.7	10
107	High glucose and palmitate increases bone morphogenic protein 4 expression in human endothelial cells. Korean Journal of Physiology and Pharmacology, 2016, 20, 169.	0.6	8
108	Ventricular reshaping with a beating heart implant improves pump function in experimental heart failure. Journal of Thoracic and Cardiovascular Surgery, 2022, 163, e343-e355.	0.4	8

#	Article	IF	CITATIONS
109	Functional screening of mammalian mechanosensitive genes using Drosophila RNAi library– Smarcd3/Bap60 is a mechanosensitive pro-inflammatory gene. Scientific Reports, 2016, 6, 36461.	1.6	7
110	Detection of Low Levels of Nitric Oxide Using an Electrochemical Sensor. Methods in Molecular Biology, 2011, 704, 81-89.	0.4	6
111	Endothelial Poldip2 regulates sepsis-induced lung injury via Rho pathway activation. Cardiovascular Research, 2022, 118, 2506-2518.	1.8	6
112	Biomechanical regulation of endothelial function in atherosclerosis. , 2021, , 3-47.		5
113	Atorvastatin and blood flow regulate expression of distinctive sets of genes in mouse carotid artery endothelium. Current Topics in Membranes, 2021, 87, 97-130.	0.5	4
114	Role of circulating miRNAs in the pathophysiology of CVD: As a potential biomarker. Gene Reports, 2018, 13, 146-150.	0.4	3
115	Is Endothelial Dysfunction a Therapeutic Target for Peripheral Artery Disease?: PRDM16 is going out on a limb. Circulation Research, 2021, 129, 78-80.	2.0	3
116	Isolation of Endothelial Cells from the Lumen of Mouse Carotid Arteries for Single-cell Multi-omics Experiments. Journal of Visualized Experiments, 2021, , .	0.2	3
117	Characterization of Poldip2 knockout mice: Avoiding incorrect gene targeting. PLoS ONE, 2021, 16, e0247261.	1.1	3
118	Editorial: Special Issue on Heart Valve Mechanobiology. Cardiovascular Engineering and Technology, 2018, 9, 121-125.	0.7	2
119	Yield and economic performance of crop rotation systems in South Dakota. , 2021, 4, e20196.		2
120	Hemodynamics and Mechanobiology of Aortic Valve Calcification. Biosystems and Biorobotics, 2016, , 237-261.	0.2	2
121	SWI/SNF (BAF) complexes: From framework to a functional role in endothelial mechanotransduction. Current Topics in Membranes, 2021, 87, 171-198.	0.5	2
122	Very late vasomotor responses and gene expression with bioresorbable scaffolds and metallic drugâ€eluting stents. Catheterization and Cardiovascular Interventions, 2021, 98, 723-732.	0.7	1
123	Calcification of Aortic Valve leaflets is Shear Dependent and Side-specific. , 2012, , .		1
124	Disturbed Blood Flow induces Arterial Stiffening Through Thrombospondinâ€1. FASEB Journal, 2018, 32, 143.1.	0.2	0
125	Role of Biomechanical Stress and Mechanosensitive miRNAs in Calcific Aortic Valve Disease. Contemporary Cardiology, 2020, , 117-135.	0.0	0
126	Endothelial Reprogramming by Disturbed Flow Revealed by Single-Cell RNA and Chromatin Accessibility Study. SSRN Electronic Journal, 0, , .	0.4	0