
Christina Dahlström

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8827122/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Throughput Processing of Nanographite–Nanocellulose-Based Electrodes for Flexible Energy Devices. Industrial & Engineering Chemistry Research, 2020, 59, 11232-11240.	3.7	11
2	Influence of Substrate in Roll-to-roll Coated Nanographite Electrodes for Metal-free Supercapacitors. Scientific Reports, 2020, 10, 5282.	3.3	14
3	Effects of geometry on large-scale tube-shear exfoliation of graphite to multilayer graphene and nanographite in water. Scientific Reports, 2019, 9, 8966.	3.3	8
4	Cellulose binders for electric double-layer capacitor electrodes: The influence of cellulose quality on electrical properties. Materials and Design, 2018, 141, 342-349.	7.0	39
5	Nanofibrillated cellulose/nanographite composite films. Cellulose, 2016, 23, 2487-2500.	4.9	11
6	Electrode Mass Balancing as an Inexpensive and Simple Method to Increase the Capacitance of Electric Double-Layer Capacitors. PLoS ONE, 2016, 11, e0163146.	2.5	17
7	Enhanced electrical and mechanical properties of nanographite electrodes for supercapacitors by addition of nanofibrillated cellulose. Physica Status Solidi (B): Basic Research, 2014, 251, 2581-2586.	1.5	17