Yalong Jiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8827019/publications.pdf

Version: 2024-02-01

218677 214800 2,925 48 26 47 h-index citations g-index papers 48 48 48 5049 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Organic–inorganic bismuth (III)-based material: A lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Research, 2016, 9, 692-702.	10.4	351
2	Charge Mediated Semiconducting-to-Metallic Phase Transition in Molybdenum Disulfide Monolayer and Hydrogen Evolution Reaction in New 1T′ Phase. Journal of Physical Chemistry C, 2015, 119, 13124-13128.	3.1	295
3	Graphene-like Two-Dimensional Ionic Boron with Double Dirac Cones at Ambient Condition. Nano Letters, 2016, 16, 3022-3028.	9.1	222
4	Anti-fouling graphene-based membranes for effective water desalination. Nature Communications, 2018, 9, 683.	12.8	197
5	Metal-free graphitic carbon nitride as mechano-catalyst for hydrogen evolution reaction. Journal of Catalysis, 2015, 332, 149-155.	6.2	127
6	Carbon nanodot decorated graphitic carbon nitride: new insights into the enhanced photocatalytic water splitting from ab initio studies. Physical Chemistry Chemical Physics, 2015, 17, 31140-31144.	2.8	105
7	Twoâ€Dimensional Boron Hydride Sheets: High Stability, Massless Dirac Fermions, and Excellent Mechanical Properties. Angewandte Chemie - International Edition, 2016, 55, 10292-10295.	13.8	100
8	Predicting Single-Layer Technetium Dichalcogenides ($TcX < sub > 2 < / sub >$, $X = S$, Se) with Promising Applications in Photovoltaics and Photocatalysis. ACS Applied Materials & Samp; Interfaces, 2016, 8, 5385-5392.	8.0	100
9	Nanosheets Co ₃ O ₄ Interleaved with Graphene for Highly Efficient Oxygen Reduction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21373-21380.	8.0	96
10	Twoâ€Dimensional Boron Hydride Sheets: High Stability, Massless Dirac Fermions, and Excellent Mechanical Properties. Angewandte Chemie, 2016, 128, 10448-10451.	2.0	94
11	An Unusual Red Carbon Nitride to Boost the Photoelectrochemical Performance of Wide Bandgap Photoanodes. Advanced Functional Materials, 2018, 28, 1805698.	14.9	94
12	Strong Coupling of MoS ₂ Nanosheets and Nitrogenâ€Doped Graphene for Highâ€Performance Pseudocapacitance Lithium Storage. Small, 2018, 14, e1704410.	10.0	89
13	First-Principles Prediction of Spin-Polarized Multiple Dirac Rings in Manganese Fluoride. Physical Review Letters, 2017, 119, 016403.	7.8	84
14	Two-dimensional GeP ₃ as a high capacity electrode material for Li-ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 25886-25890.	2.8	81
15	Predicting Two-Dimensional C ₃ B/C ₃ N van der Waals p–n Heterojunction with Strong Interlayer Electron Coupling and Enhanced Photocurrent. Journal of Physical Chemistry Letters, 2018, 9, 858-862.	4.6	74
16	Two-Dimensional Titanium Carbonitride Mxene for High-Performance Sodium Ion Batteries. ACS Applied Nano Materials, 2018, 1, 6854-6863.	5.0	71
17	Single Layer Bismuth Iodide: Computational Exploration of Structural, Electrical, Mechanical and Optical Properties. Scientific Reports, 2015, 5, 17558.	3.3	67
18	Versatile Single-Layer Sodium Phosphidostannate(II): Strain-Tunable Electronic Structure, Excellent Mechanical Flexibility, and an Ideal Gap for Photovoltaics. Journal of Physical Chemistry Letters, 2015, 6, 2682-2687.	4.6	60

#	Article	IF	Citations
19	Two-dimensional nodal-loop half-metal in monolayer MnN. Physical Review Materials, 2019, 3, .	2.4	55
20	Versatile two-dimensional silicon diphosphide (SiP ₂) for photocatalytic water splitting. Nanoscale, 2018, 10, 6369-6374.	5.6	51
21	Predicting a new phase $(T\hat{a} \in \hat{a} \in \hat{a})$ of two-dimensional transition metal di-chalcogenides and strain-controlled topological phase transition. Nanoscale, 2016, 8, 4969-4975.	5.6	50
22	Graphene-covered perovskites: an effective strategy to enhance light absorption and resist moisture degradation. RSC Advances, 2015, 5, 82346-82350.	3.6	43
23	Rhombohedral Lanthanum Manganite: A New Class of Dirac Half-Metal with Promising Potential in Spintronics. ACS Applied Materials & Spintronics. ACS ACS Applied Materials & Spintronics. ACS Applied	8.0	43
24	Modelling CO 2 adsorption and separation on experimentally-realized B 40 fullerene. Computational Materials Science, 2015, 108, 38-41.	3.0	40
25	Predicting a graphene-like WB4 nanosheet with a double Dirac cone, an ultra-high Fermi velocity and significant gap opening by spin–orbit coupling. Physical Chemistry Chemical Physics, 2017, 19, 5449-5453.	2.8	40
26	Half-Auxeticity and Anisotropic Transport in Pd Decorated Two-Dimensional Boron Sheets. Nano Letters, 2021, 21, 2356-2362.	9.1	29
27	Predicting New Two-Dimensional Pd ₃ (PS ₄) ₂ as an Efficient Photocatalyst for Water Splitting. Journal of Physical Chemistry C, 2018, 122, 21927-21932.	3.1	26
28	Ab initio study of two-dimensional PdPS as an ideal light harvester and promising catalyst for hydrogen evolution reaction. Materials Today Energy, 2018, 7, 136-140.	4.7	24
29	Growth of MoS ₂ Nanoflowers with Expanded Interlayer Distance onto Nâ€Doped Graphene for Reversible Lithium Storage. ChemElectroChem, 2018, 5, 2263-2270.	3.4	24
30	Predicting multiple Dirac-cones and ultrahigh Fermi velocity in perovskite <i>R</i> 3Ì,, <i>c</i> phase LaCuO ₃ . Journal of Materials Chemistry C, 2018, 6, 6132-6137.	5.5	21
31	Substantial Band-Gap Tuning and a Strain-Controlled Semiconductor to Gapless/Band-Inverted Semimetal Transition in Rutile Lead/Stannic Dioxide. ACS Applied Materials & Samp; Interfaces, 2016, 8, 25667-25673.	8.0	18
32	Room temperature ferromagnetism and antiferromagnetism in two-dimensional iron arsenides. Nanoscale, 2019, 11, 16508-16514.	5.6	18
33	2D boron dichalcogenides from the substitution of Mo with ionic B ₂ pair in MoX ₂ (X = S, Se and Te): high stability, large excitonic effect and high charge carrier mobility. Journal of Materials Chemistry C, 2019, 7, 1651-1658.	5.5	17
34	Computational exploration of two-dimensional silicon diarsenide and germanium arsenide for photovoltaic applications. Beilstein Journal of Nanotechnology, 2018, 9, 1247-1253.	2.8	14
35	Strain Mediated Bandgap Reduction, Light Spectrum Broadening, and Carrier Mobility Enhancement of Methylammonium Lead/Tin Iodide Perovskites. Particle and Particle Systems Characterization, 2017, 34, 1600288.	2.3	13
36	Versatile two-dimensional stanene-based membrane for hydrogen purification. International Journal of Hydrogen Energy, 2017, 42, 5577-5583.	7.1	13

#	Article	IF	CITATIONS
37	First-principles prediction of polar half-metallicity and out-of-plane piezoelectricity in two-dimensional quintuple layered cobalt selenide. Journal of Materials Chemistry C, 2021, 9, 12046-12050.	5.5	11
38	Calculations of helium separation via uniform pores of stanene-based membranes. Beilstein Journal of Nanotechnology, 2015, 6, 2470-2476.	2.8	9
39	First principles study of trirutile magnesium bismuth oxide: Ideal bandgap for photovoltaics, strain-mediated band-inversion and semiconductor-to-semimetal transition. Computational Materials Science, 2018, 149, 158-161.	3.0	9
40	Understanding the roles of carbon in carbon/g-C3N4 based photocatalysts for H2 evolution. Nano Research, 0 , 1 .	10.4	9
41	Free-radical gases on two-dimensional transition-metal disulfides (XS ₂ , X = Mo/W): robust half-metallicity for efficient nitrogen oxide sensors. Beilstein Journal of Nanotechnology, 2018, 9, 1641-1646.	2.8	8
42	Monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>RhB</mml:mi><mml:mn>4<td>:mr&2/mr</td><td>ıl:m7sub></td></mml:mn></mml:msub></mml:math>	:mr&2/mr	ıl:m 7 sub>
43	Predicting MnB6 monolayer with room temperature ferromagnetism and high magnetic anisotropy. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114930.	2.7	6
44	Electron dynamics triggered by double attosecond pulses: Simulations based on time-dependent density functional theory. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 95-99.	2.1	5
45	Polymorphism of low dimensional boron nanomaterials driven by electrostatic gating: a computational discovery. Nanoscale, 2020, 12, 10543-10549.	5 . 6	5
46	A perfect match between borophene and aluminium in the AlB ₃ heterostructure with covalent Alâ€"B bonds, multiple Dirac points and a high Fermi velocity. Chemical Science, 2022, 13, 1016-1022.	7.4	5
47	Anomalous Enhancement of Mechanical Properties in the Ammonia Adsorbed Defective Graphene. Scientific Reports, 2016, 6, 33810.	3.3	3
48	Two-dimensional tetragonal and hexagonal lattices of transition metal carbides MC (M = Ti, Zr, Hf): Observation of two nodal loops and strong light-harvesting ability. Applied Physics Letters, 2022, 120,	3.3	2

4