
Jennifer A Wargo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8826997/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell, 2017, 168, 707-723.	28.9	3,483
2	Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science, 2018, 359, 97-103.	12.6	3,126
3	A Landscape of Driver Mutations in Melanoma. Cell, 2012, 150, 251-263.	28.9	2,247
4	Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature, 2012, 487, 500-504.	27.8	1,561
5	B cells and tertiary lymphoid structures promote immunotherapy response. Nature, 2020, 577, 549-555.	27.8	1,421
6	COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature, 2010, 468, 968-972.	27.8	1,325
7	RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature, 2011, 480, 387-390.	27.8	1,298
8	Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma. Cell, 2018, 175, 998-1013.e20.	28.9	1,260
9	Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature, 2020, 577, 561-565.	27.8	1,209
10	Loss of PTEN Promotes Resistance to T Cell–Mediated Immunotherapy. Cancer Discovery, 2016, 6, 202-216.	9.4	1,158
11	B cells are associated with survival and immunotherapy response in sarcoma. Nature, 2020, 577, 556-560.	27.8	1,158
12	The human tumor microbiome is composed of tumor type–specific intracellular bacteria. Science, 2020, 368, 973-980.	12.6	1,077
13	Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science, 2017, 357, 1156-1160.	12.6	1,059
14	Loss of IFN-γ Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy. Cell, 2016, 167, 397-404.e9.	28.9	1,009
15	Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 Checkpoint Blockade. Cell, 2017, 170, 1120-1133.e17.	28.9	960
16	The Influence of the Gut Microbiome on Cancer, Immunity, and Cancer Immunotherapy. Cancer Cell, 2018, 33, 570-580.	16.8	911
17	BRAF Inhibition Is Associated with Enhanced Melanoma Antigen Expression and a More Favorable Tumor Microenvironment in Patients with Metastatic Melanoma. Clinical Cancer Research, 2013, 19, 1225-1231.	7.0	832
18	Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell, 2019, 178, 795-806 e12	28.9	830

#	Article	IF	CITATIONS
19	Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade. Cancer Discovery, 2016, 6, 827-837.	9.4	785
20	Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science, 2021, 371, 602-609.	12.6	784
21	The microbiome, cancer, and cancer therapy. Nature Medicine, 2019, 25, 377-388.	30.7	712
22	Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Science Translational Medicine, 2017, 9, .	12.4	689
23	Selective BRAFV600E Inhibition Enhances T-Cell Recognition of Melanoma without Affecting Lymphocyte Function. Cancer Research, 2010, 70, 5213-5219.	0.9	659
24	Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nature Medicine, 2018, 24, 1649-1654.	30.7	592
25	Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell, 2021, 184, 5309-5337.	28.9	588
26	Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nature Medicine, 2018, 24, 1804-1808.	30.7	521
27	The microbiome and human cancer. Science, 2021, 371, .	12.6	506
28	Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: a retrospective, multicohort analysis. Lancet Oncology, The, 2018, 19, 310-322.	10.7	486
29	VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nature Medicine, 2017, 23, 551-555.	30.7	467
30	A Melanoma Cell State Distinction Influences Sensitivity to MAPK Pathway Inhibitors. Cancer Discovery, 2014, 4, 816-827.	9.4	448
31	The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nature Genetics, 2015, 47, 250-256.	21.4	434
32	The gut microbiota influences anticancer immunosurveillance and general health. Nature Reviews Clinical Oncology, 2018, 15, 382-396.	27.6	389
33	Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science, 2021, 374, 1632-1640.	12.6	369
34	Neoadjuvant nivolumab or nivolumab plus ipilimumab in operable non-small cell lung cancer: the phase 2 randomized NEOSTAR trial. Nature Medicine, 2021, 27, 504-514.	30.7	357
35	BRAF Inhibition Increases Tumor Infiltration by T cells and Enhances the Antitumor Activity of Adoptive Immunotherapy in Mice. Clinical Cancer Research, 2013, 19, 393-403.	7.0	336
36	sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature, 2016, 532, 250-254.	27.8	290

#	Article	IF	CITATIONS
37	Uveal melanoma: From diagnosis to treatment and the science in between. Cancer, 2016, 122, 2299-2312.	4.1	272
38	Oncogenic BRAF(V600E) Promotes Stromal Cell-Mediated Immunosuppression Via Induction of Interleukin-1 in Melanoma. Clinical Cancer Research, 2012, 18, 5329-5340.	7.0	266
39	Anti-CTLA-4 Immunotherapy Does Not Deplete FOXP3+ Regulatory T Cells (Tregs) in Human Cancers. Clinical Cancer Research, 2019, 25, 1233-1238.	7.0	260
40	Remodeling of the Collagen Matrix in Aging Skin Promotes Melanoma Metastasis and Affects Immune Cell Motility. Cancer Discovery, 2019, 9, 64-81.	9.4	260
41	Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncology, The, 2019, 20, e77-e91.	10.7	249
42	Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1692-1697.	7.1	237
43	Neoadjuvant plus adjuvant dabrafenib and trametinib versus standard of care in patients with high-risk, surgically resectable melanoma: a single-centre, open-label, randomised, phase 2 trial. Lancet Oncology, The, 2018, 19, 181-193.	10.7	233
44	Molecular Profiling Reveals Unique Immune and Metabolic Features of Melanoma Brain Metastases. Cancer Discovery, 2019, 9, 628-645.	9.4	231
45	Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell, 2021, 184, 5338-5356.e21.	28.9	229
46	Response to BRAF Inhibition in Melanoma Is Enhanced When Combined with Immune Checkpoint Blockade. Cancer Immunology Research, 2014, 2, 643-654.	3.4	226
47	Combination anti–CTLA-4 plus anti–PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22699-22709.	7.1	226
48	Pathological response and survival with neoadjuvant therapy in melanoma: a pooled analysis from the International Neoadjuvant Melanoma Consortium (INMC). Nature Medicine, 2021, 27, 301-309.	30.7	218
49	PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance. Nature Immunology, 2019, 20, 1231-1243.	14.5	217
50	Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nature Medicine, 2021, 27, 1432-1441.	30.7	216
51	Inhibiting Drivers of Non-mutational Drug Tolerance Is a Salvage Strategy for Targeted Melanoma Therapy. Cancer Cell, 2016, 29, 270-284.	16.8	198
52	Hallmarks of response to immune checkpoint blockade. British Journal of Cancer, 2017, 117, 1-7.	6.4	194
53	Identification of bacteria-derived HLA-bound peptides in melanoma. Nature, 2021, 592, 138-143.	27.8	187
54	Diverse types of dermatologic toxicities from immune checkpoint blockade therapy. Journal of Cutaneous Pathology, 2017, 44, 158-176.	1.3	186

#	Article	IF	CITATIONS
55	The Immune Microenvironment Confers Resistance to MAPK Pathway Inhibitors through Macrophage-Derived TNFα. Cancer Discovery, 2014, 4, 1214-1229.	9.4	174
56	The Cancer Microbiome: Distinguishing Direct and Indirect Effects Requires a Systemic View. Trends in Cancer, 2020, 6, 192-204.	7.4	162
57	Inhibition of mTORC1/2 Overcomes Resistance to MAPK Pathway Inhibitors Mediated by PGC1α and Oxidative Phosphorylation in Melanoma. Cancer Research, 2014, 74, 7037-7047.	0.9	161
58	TCR Repertoire Intratumor Heterogeneity in Localized Lung Adenocarcinomas: An Association with Predicted Neoantigen Heterogeneity and Postsurgical Recurrence. Cancer Discovery, 2017, 7, 1088-1097.	9.4	160
59	Sustained Type I interferon signaling as a mechanism of resistance to PD-1 blockade. Cell Research, 2019, 29, 846-861.	12.0	160
60	Targeting the gut and tumor microbiota in cancer. Nature Medicine, 2022, 28, 690-703.	30.7	159
61	Neoadjuvant systemic therapy in melanoma: recommendations of the International Neoadjuvant Melanoma Consortium. Lancet Oncology, The, 2019, 20, e378-e389.	10.7	155
62	The cancer microbiome. Nature Reviews Cancer, 2019, 19, 371-376.	28.4	153
63	Anti–CTLA-4 Immunotherapy Does Not Deplete FOXP3+ Regulatory T Cells (Tregs) in Human Cancers—Response. Clinical Cancer Research, 2019, 25, 3469-3470.	7.0	151
64	Autoimmune antibodies correlate with immune checkpoint therapy-induced toxicities. Proceedings of the United States of America, 2019, 116, 22246-22251.	7.1	142
65	Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in in in intrapancreatic CD8+ T cells. Journal of Experimental Medicine, 2020, 217, .	8.5	142
66	Comprehensive T cell repertoire characterization of non-small cell lung cancer. Nature Communications, 2020, 11, 603.	12.8	140
67	Immune Effects of Chemotherapy, Radiation, and Targeted Therapy and Opportunities for Combination With Immunotherapy. Seminars in Oncology, 2015, 42, 601-616.	2.2	139
68	Effective Innate and Adaptive Antimelanoma Immunity through Localized TLR7/8 Activation. Journal of Immunology, 2014, 193, 4722-4731.	0.8	136
69	Pathological assessment of resection specimens after neoadjuvant therapy for metastatic melanoma. Annals of Oncology, 2018, 29, 1861-1868.	1.2	135
70	The role of the gastrointestinal microbiome in infectious complications during induction chemotherapy for acute myeloid leukemia. Cancer, 2016, 122, 2186-2196.	4.1	121
71	Genomic and immune heterogeneity are associated with differential responses to therapy in melanoma. Npj Genomic Medicine, 2017, 2, .	3.8	120
72	Granulomatous/sarcoid-like lesions associated with checkpoint inhibitors: a marker of therapy response in a subset of melanoma patients. , 2018, 6, 14.		118

#	Article	IF	CITATIONS
73	Correlative Analyses of the SARC028 Trial Reveal an Association Between Sarcoma-Associated Immune Infiltrate and Response to Pembrolizumab. Clinical Cancer Research, 2020, 26, 1258-1266.	7.0	115
74	Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell, 2022, 40, 509-523.e6.	16.8	115
75	Tumor-associated B-cells induce tumor heterogeneity and therapy resistance. Nature Communications, 2017, 8, 607.	12.8	109
76	EPHA2 Is a Mediator of Vemurafenib Resistance and a Novel Therapeutic Target in Melanoma. Cancer Discovery, 2015, 5, 274-287.	9.4	107
77	Tumor-infiltrating mast cells are associated with resistance to anti-PD-1 therapy. Nature Communications, 2021, 12, 346.	12.8	107
78	Novel algorithmic approach predicts tumor mutation load and correlates with immunotherapy clinical outcomes using a defined gene mutation set. BMC Medicine, 2016, 14, 168.	5.5	106
79	Mechanisms of immune activation and regulation: lessons from melanoma. Nature Reviews Cancer, 2022, 22, 195-207.	28.4	101
80	BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes. Oncolmmunology, 2013, 2, e26615.	4.6	97
81	Monitoring immune responses in the tumor microenvironment. Current Opinion in Immunology, 2016, 41, 23-31.	5.5	96
82	Density, Distribution, and Composition of Immune Infiltrates Correlate with Survival in Merkel Cell Carcinoma. Clinical Cancer Research, 2016, 22, 5553-5563.	7.0	96
83	Anti-tumour immunity induces aberrant peptide presentation in melanoma. Nature, 2021, 590, 332-337.	27.8	81
84	BRAF Inhibition Generates a Host–Tumor Niche that Mediates Therapeutic Escape. Journal of Investigative Dermatology, 2015, 135, 3115-3124.	0.7	80
85	Combined Analysis of Antigen Presentation and T-cell Recognition Reveals Restricted Immune Responses in Melanoma. Cancer Discovery, 2018, 8, 1366-1375.	9.4	80
86	The state of melanoma: challenges and opportunities. Pigment Cell and Melanoma Research, 2016, 29, 404-416.	3.3	77
87	Considerations for designing preclinical cancer immune nanomedicine studies. Nature Nanotechnology, 2021, 16, 6-15.	31.5	77
88	Universes Collide: Combining Immunotherapy with Targeted Therapy for Cancer. Cancer Discovery, 2014, 4, 1377-1386.	9.4	76
89	MITF Modulates Therapeutic Resistance through EGFR Signaling. Journal of Investigative Dermatology, 2015, 135, 1863-1872.	0.7	76
90	9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy. Nature Communications, 2021, 12, 5606.	12.8	76

#	Article	IF	CITATIONS
91	The RNA-binding Protein MEX3B Mediates Resistance to Cancer Immunotherapy by Downregulating HLA-A Expression. Clinical Cancer Research, 2018, 24, 3366-3376.	7.0	73
92	Genetic and Genomic Characterization of 462 Melanoma Patient-Derived Xenografts, Tumor Biopsies, and Cell Lines. Cell Reports, 2017, 21, 1936-1952.	6.4	72
93	The Tumor Microbiome in Pancreatic Cancer: Bacteria and Beyond. Cancer Cell, 2019, 36, 577-579.	16.8	72
94	An adaptive signaling network in melanoma inflammatory niches confers tolerance to MAPK signaling inhibition. Journal of Experimental Medicine, 2017, 214, 1691-1710.	8.5	71
95	Poor Response to Neoadjuvant Chemotherapy Correlates with Mast Cell Infiltration in Inflammatory Breast Cancer. Cancer Immunology Research, 2019, 7, 1025-1035.	3.4	70
96	Phase II study of neoadjuvant checkpoint blockade in patients with surgically resectable undifferentiated pleomorphic sarcoma and dedifferentiated liposarcoma. BMC Cancer, 2018, 18, 913.	2.6	69
97	Association of Vitamin D Levels With Outcome in Patients With Melanoma After Adjustment For C-Reactive Protein. Journal of Clinical Oncology, 2016, 34, 1741-1747.	1.6	64
98	Combining targeted therapy and immune checkpoint inhibitors in the treatment of metastatic melanoma. Cancer Biology and Medicine, 2014, 11, 237-46.	3.0	64
99	Targeting endothelin receptor signalling overcomes heterogeneity driven therapy failure. EMBO Molecular Medicine, 2017, 9, 1011-1029.	6.9	63
100	Gut microbiome diversity is an independent predictor of survival in cervical cancer patients receiving chemoradiation. Communications Biology, 2021, 4, 237.	4.4	62
101	Pilot Phase II Trial of Neoadjuvant Immunotherapy in Locoregionally Advanced, Resectable Cutaneous Squamous Cell Carcinoma of the Head and Neck. Clinical Cancer Research, 2021, 27, 4557-4565.	7.0	61
102	Modulating gut microbes. Science, 2020, 369, 1302-1303.	12.6	60
103	The Impact of Intratumoral and Gastrointestinal Microbiota on Systemic Cancer Therapy. Trends in Immunology, 2018, 39, 900-920.	6.8	56
104	Downregulation of the Ubiquitin Ligase RNF125 Underlies Resistance of Melanoma Cells to BRAF Inhibitors via JAK1 Deregulation. Cell Reports, 2015, 11, 1458-1473.	6.4	55
105	Distinct clinical patterns and immune infiltrates are observed at time of progression on targeted therapy versus immune checkpoint blockade for melanoma. Oncolmmunology, 2016, 5, e1136044.	4.6	55
106	A Preexisting Rare <i>PIK3CA</i> E545K Subpopulation Confers Clinical Resistance to MEK plus CDK4/6 Inhibition in <i>NRAS</i> Melanoma and Is Dependent on S6K1 Signaling. Cancer Discovery, 2018, 8, 556-567.	9.4	55
107	Influences of BRAF Inhibitors on the Immune Microenvironment and the Rationale for Combined Molecular and Immune Targeted Therapy. Current Oncology Reports, 2016, 18, 42.	4.0	54
108	Can we harness the microbiota to enhance the efficacy of cancer immunotherapy?. Nature Reviews Immunology, 2020, 20, 522-528.	22.7	54

#	Article	IF	CITATIONS
109	Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy. Nature, 2022, 606, 797-803.	27.8	54
110	Comparative immunologic characterization of autoimmune giant cell myocarditis with ipilimumab. Oncolmmunology, 2017, 6, e1361097.	4.6	50
111	Abstract 2838: The gut microbiome (GM) and immunotherapy response are influenced by host lifestyle factors. Cancer Research, 2019, 79, 2838-2838.	0.9	50
112	Biomarker Accessible and Chemically Addressable Mechanistic Subtypes of BRAF Melanoma. Cancer Discovery, 2017, 7, 832-851.	9.4	49
113	Implementation of a Pan-Genomic Approach to Investigate Holobiont-Infecting Microbe Interaction: A Case Report of a Leukemic Patient with Invasive Mucormycosis. PLoS ONE, 2015, 10, e0139851.	2.5	47
114	Hypoxia-Driven Mechanism of Vemurafenib Resistance in Melanoma. Molecular Cancer Therapeutics, 2016, 15, 2442-2454.	4.1	47
115	Analysis of the immune infiltrate in undifferentiated pleomorphic sarcoma of the extremity and trunk in response to radiotherapy: Rationale for combination neoadjuvant immune checkpoint inhibition and radiotherapy. Oncolmmunology, 2018, 7, e1385689.	4.6	46
116	Parallel profiling of immune infiltrate subsets in uveal melanoma versus cutaneous melanoma unveils similarities and differences: A pilot study. Oncolmmunology, 2017, 6, e1321187.	4.6	45
117	The Rationale and Emerging Use of Neoadjuvant Immune Checkpoint Blockade for Solid Malignancies. Annals of Surgical Oncology, 2018, 25, 1814-1827.	1.5	45
118	Utility of BRAF V600E Immunohistochemistry Expression Pattern as a Surrogate of BRAF Mutation Status in 154 Patients with Advanced Melanoma. Human Pathology, 2015, 46, 1101-1110.	2.0	43
119	Nodal immune flare mimics nodal disease progression following neoadjuvant immune checkpoint inhibitors in non-small cell lung cancer. Nature Communications, 2021, 12, 5045.	12.8	42
120	Circulating Tumor Cells and Early Relapse in Node-positive Melanoma. Clinical Cancer Research, 2020, 26, 1886-1895.	7.0	42
121	Clinical, Molecular, and Immune Analysis of Dabrafenib-Trametinib Combination Treatment for BRAF Inhibitor–Refractory Metastatic Melanoma. JAMA Oncology, 2016, 2, 1056.	7.1	41
122	Association between Body Mass Index, C-Reactive Protein Levels, and Melanoma Patient Outcomes. Journal of Investigative Dermatology, 2017, 137, 1792-1795.	0.7	40
123	Combination Immunotherapy Development in Melanoma. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2018, 38, 197-207.	3.8	39
124	Landscape of Targeted Anti-Cancer Drug Synergies in Melanoma Identifies a Novel BRAF-VEGFR/PDGFR Combination Treatment. PLoS ONE, 2015, 10, e0140310.	2.5	39
125	Gut Microbiome Modulates Response to Cancer Immunotherapy. Digestive Diseases and Sciences, 2020, 65, 885-896.	2.3	38
126	Melanoma Evolves Complete Immunotherapy Resistance through the Acquisition of a Hypermetabolic Phenotype. Cancer Immunology Research, 2020, 8, 1365-1380.	3.4	37

#	Article	IF	CITATIONS
127	Clinicopathological features and clinical outcomes associated with <i>TP53</i> and <i>BRAF</i> ^{<i>N</i>} ^{<i>onâ€</i>} ^{<i>V</i>} ^{<i>OO</i>} mutations in cutaneous melanoma patients. Cancer, 2017, 123, 1372-1381.	4.1	36
128	Gut Microbiome Modulation Via Fecal Microbiota Transplant to Augment Immunotherapy in Patients with Melanoma or Other Cancers. Current Oncology Reports, 2020, 22, 74.	4.0	34
129	Immune Checkpoint Blockade across the Cancer Care Continuum. Immunity, 2018, 48, 1077-1080.	14.3	33
130	A PAX3/BRN2 rheostat controls the dynamics of BRAF mediated MITF regulation in MITF ^{high} /AXL ^{low} melanoma. Pigment Cell and Melanoma Research, 2019, 32, 280-291.	3.3	31
131	Coenzyme A fuels TÂcell anti-tumor immunity. Cell Metabolism, 2021, 33, 2415-2427.e6.	16.2	31
132	Immune Phenotype and Response to Neoadjuvant Therapy in Triple-Negative Breast Cancer. Clinical Cancer Research, 2021, 27, 5365-5375.	7.0	29
133	Cancer Evolution during Immunotherapy. Cell, 2017, 171, 740-742.	28.9	28
134	Gut Microbiota and Antitumor Immunity: Potential Mechanisms for Clinical Effect. Cancer Immunology Research, 2021, 9, 365-370.	3.4	28
135	Does It MEK a Difference? Understanding Immune Effects of Targeted Therapy. Clinical Cancer Research, 2015, 21, 3102-3104.	7.0	27
136	Gene expression profiling of lichenoid dermatitis immuneâ€related adverse event from immune checkpoint inhibitors reveals increased CD14 ⁺ and CD16 ⁺ monocytes driving an innate immune response. Journal of Cutaneous Pathology, 2019, 46, 627-636.	1.3	27
137	Immune and Circulating Tumor DNA Profiling After Radiation Treatment for Oligometastatic Non-Small Cell Lung Cancer: Translational Correlatives from a Mature Randomized Phase II Trial. International Journal of Radiation Oncology Biology Physics, 2020, 106, 349-357.	0.8	27
138	The need for a network to establish and validate predictive biomarkers in cancer immunotherapy. Journal of Translational Medicine, 2017, 15, 223.	4.4	25
139	A phase II study of combined therapy with a BRAF inhibitor (vemurafenib) and interleukin-2 (aldesleukin) in patients with metastatic melanoma. Oncolmmunology, 2018, 7, e1423172.	4.6	25
140	Phosphorylated Histone H3 (PHH3) Is a Superior Proliferation Marker for Prognosis of Pancreatic Neuroendocrine Tumors. Annals of Surgical Oncology, 2016, 23, 609-617.	1.5	24
141	Interaction of molecular alterations with immune response in melanoma. Cancer, 2017, 123, 2130-2142.	4.1	24
142	B7-H3 Expression in Merkel Cell Carcinoma–Associated Endothelial Cells Correlates with Locally Aggressive Primary Tumor Features and Increased Vascular Density. Clinical Cancer Research, 2019, 25, 3455-3467.	7.0	24
143	Role of Immune Response, Inflammation, and Tumor Immune Response–Related Cytokines/Chemokines in Melanoma Progression. Journal of Investigative Dermatology, 2019, 139, 2352-2358.e3.	0.7	23
144	Stroma remodeling and reduced cell division define durable response to PD-1 blockade in melanoma. Nature Communications, 2020, 11, 853.	12.8	23

#	Article	IF	CITATIONS
145	Cumulative Incidence and Predictors of CNS Metastasis for Patients With American Joint Committee on Cancer 8th Edition Stage III Melanoma. Journal of Clinical Oncology, 2020, 38, 1429-1441.	1.6	23
146	Update on use of aldesleukin for treatment of high-risk metastatic melanoma. ImmunoTargets and Therapy, 2015, 4, 79.	5.8	21
147	Expression of PD-1 and PD-L1 in Extramammary Paget Disease: Implications for Immune-Targeted Therapy. Cancers, 2019, 11, 754.	3.7	21
148	Resolution of tissue signatures of therapy response in patients with recurrent GBM treated with neoadjuvant anti-PD1. Nature Communications, 2021, 12, 4031.	12.8	21
149	Neoadjuvant Systemic Therapy (NAST) in Patients with Melanoma: Surgical Considerations by the International Neoadjuvant Melanoma Consortium (INMC). Annals of Surgical Oncology, 2022, 29, 3694-3708.	1.5	21
150	High expression of PD-1 and PD-L1 in ocular adnexal sebaceous carcinoma. Oncolmmunology, 2018, 7, e1475874.	4.6	20
151	A prospective study of the adaptive changes in the gut microbiome during standard-of-care chemoradiotherapy for gynecologic cancers. PLoS ONE, 2021, 16, e0247905.	2.5	20
152	Evidence of synergy with combined BRAF-targeted therapy and immune checkpoint blockade for metastatic melanoma. Oncolmmunology, 2014, 3, e954956.	4.6	19
153	Concepts Collide: Genomic, Immune, and Microbial Influences on the Tumor Microenvironment and Response to Cancer Therapy. Frontiers in Immunology, 2018, 9, 946.	4.8	19
154	Linking Associations of Rare Low-Abundance Species to Their Environments by Association Networks. Frontiers in Microbiology, 2018, 9, 297.	3.5	19
155	The Current Landscape of Immune Checkpoint Inhibition for Solid Malignancies. Surgical Oncology Clinics of North America, 2019, 28, 369-386.	1.5	19
156	Prognostic model for patient survival in primary anorectal mucosal melanoma: stage at presentation determines relevance of histopathologic features. Modern Pathology, 2020, 33, 496-513.	5.5	19
157	Histopathological features of complete pathological response predict recurrence-free survival following neoadjuvant targeted therapy for metastatic melanoma. Annals of Oncology, 2020, 31, 1569-1579.	1.2	18
158	Functional annotation of melanoma risk loci identifies novel susceptibility genes. Carcinogenesis, 2020, 41, 452-457.	2.8	15
159	Spatially resolved analyses link genomic and immune diversity and reveal unfavorable neutrophil activation in melanoma. Nature Communications, 2020, 11, 1839.	12.8	15
160	T-Cell Repertoire in Combination with T-Cell Density Predicts Clinical Outcomes in Patients with Merkel Cell Carcinoma. Journal of Investigative Dermatology, 2020, 140, 2146-2156.e4.	0.7	14
161	Fusobacterium is enriched in oral cancer and promotes induction of programmed death-ligand 1 (PD-L1). Neoplasia, 2022, 31, 100813.	5.3	14
162	Immunotherapy resistance: the answers lie ahead $\hat{a} \in $ not in front $\hat{a} \in $ of us. , 2017, 5, 10.		13

#	Article	IF	CITATIONS
163	Neoadjuvant therapy for melanoma: rationale for neoadjuvant therapy and pivotal clinical trials. Therapeutic Advances in Medical Oncology, 2022, 14, 175883592210830.	3.2	13
164	Combined tumor and immune signals from genomes or transcriptomes predict outcomes of checkpoint inhibition in melanoma. Cell Reports Medicine, 2022, 3, 100500.	6.5	13
165	Use of clinical nextâ€generation sequencing to identify melanomas harboring <i><scp>SMARCB1</scp></i> mutations. Journal of Cutaneous Pathology, 2015, 42, 308-317.	1.3	11
166	Uncovering the role of the gut microbiota in immune checkpoint blockade therapy: A mini-review. Seminars in Hematology, 2020, 57, 13-18.	3.4	11
167	Expansion of Candidate HPV-Specific T Cells in the Tumor Microenvironment during Chemoradiotherapy Is Prognostic in HPV16+ Cancers. Cancer Immunology Research, 2022, 10, 259-271.	3.4	10
168	Glioma and the gut–brain axis: opportunities and future perspectives. Neuro-Oncology Advances, 2022, 4, vdac054.	0.7	10
169	Al finds microbial signatures in tumours and blood across cancer types. Nature, 2020, 579, 502-503.	27.8	9
170	Multi-modal molecular programs regulate melanoma cell state. Nature Communications, 2022, 13, .	12.8	9
171	Fecal microbiota transplantation as a mean of overcoming immunotherapy-resistant cancers – hype or hope?. Therapeutic Advances in Medical Oncology, 2021, 13, 175883592110458.	3.2	8
172	Evaluation of Plasma IL-6 in Patients with Melanoma as a Prognostic and Checkpoint Immunotherapy Predictive Biomarker. Journal of Investigative Dermatology, 2022, 142, 2046-2049.e3.	0.7	8
173	Neoadjuvant therapy for melanoma: is it ready for prime time?. Lancet Oncology, The, 2019, 20, 892-894.	10.7	7
174	Nodal Recurrence is a Primary Driver of Early Relapse for Patients with Sentinel Lymph Node-Positive Melanoma in the Modern Therapeutic Era. Annals of Surgical Oncology, 2021, 28, 3480-3489.	1.5	7
175	The Microbiome in Immuno-oncology. Advances in Experimental Medicine and Biology, 2020, 1244, 325-334.	1.6	7
176	Identification of MicroRNA–mRNA Networks in Melanoma and Their Association with PD-1 Checkpoint Blockade Outcomes. Cancers, 2021, 13, 5301.	3.7	7
177	Short-term treatment with multi-drug regimens combining BRAF/MEK-targeted therapy and immunotherapy results in durable responses in <i>Braf</i> -mutated melanoma. OncoImmunology, 2021, 10, 1992880.	4.6	7
178	Cancer Genomics in Clinical Context. Trends in Cancer, 2015, 1, 36-43.	7.4	6
179	Toxicity of Immune Checkpoint Inhibitors: Considerations for the Surgeon. Annals of Surgical Oncology, 2020, 27, 1533-1545.	1.5	6
180	Metastatic melanoma with balloon/histiocytoid cytomorphology after treatment with immunotherapy: A histologic mimic and diagnostic pitfall. Journal of Cutaneous Pathology, 2018, 45, 545-549.	1.3	5

#	Article	IF	CITATIONS
181	Spitzoid melanoma with histopathological features of <i> <scp>ALK</scp> </i> gene rearrangement exhibiting <i> <scp>ALK</scp> </i> copy number gain: a novel mechanism of <scp>ALK</scp> activation in spitzoid neoplasia. British Journal of Dermatology, 2019, 180, 404-408.	1.5	5
182	Outcomes After Sphincter-Sparing Local Therapy for Anorectal Melanoma: 1989 to 2020. Practical Radiation Oncology, 2022, 12, 437-445.	2.1	5
183	Gut microbes as biomarkers of ICI response — sharpening the focus. Nature Reviews Clinical Oncology, 2022, 19, 495-496.	27.6	5
184	Tertiary lymphoid structures with overlapping histopathologic features of cutaneous marginal zone lymphoma during neoadjuvant cemiplimab therapy are associated with antitumor response. Journal of Cutaneous Pathology, 2021, 48, 674-679.	1.3	4
185	The Gut and Cervical Microbiome Promote Immune Activation and Response to Chemoradiation in Cervical Cancer. SSRN Electronic Journal, 0, , .	0.4	3
186	Evolution of FMT $\hat{a} \in $ From early clinical to standardized treatments. Biologicals, 2022, , .	1.4	3
187	Immunotherapy response-associated Akkermansia: canary in a coal mine?. Trends in Immunology, 2022, , .	6.8	3
188	Working with Human Tissues for Translational Cancer Research. Journal of Visualized Experiments, 2015, , .	0.3	2
189	Gut Microbes' Impact on Oncogenic Drivers: Location Matters. Molecular Cell, 2020, 79, 878-880.	9.7	2
190	Gene Targeting Meets Cell-Based Therapy: Raising the Tail, or Merely a Whimper?. Clinical Cancer Research, 2017, 23, 327-329.	7.0	1
191	Gut Bacterial Diversity Associates with Efficacy of Anti-CD19 CAR T-Cell Therapy in Patients with Large B-Cell Lymphoma. Blood, 2020, 136, 34-35.	1.4	1
192	Tumor MHC Class I Expression Associates with Intralesional IL2 Response in Melanoma. Cancer Immunology Research, 2022, 10, 303-313.	3.4	1
193	More fuel for the fire: Gut microbes and toxicity to immune agonist antibodies in cancer. Cell Reports Medicine, 2021, 2, 100482.	6.5	1
194	Utilization and evolving prescribing practice of opioid and nonâ€opioid analgesics in patients undergoing lymphadenectomy for cutaneous malignancy. Journal of Surgical Oncology, 2022, 125, 719-729.	1.7	1
195	Trust your gut when it comes to driving CARs. Med, 2022, 3, 281-283.	4.4	1
196	RAF Inhibitor Therapy Promotes Melanocytic Antigen Expression and Enhanced Anti-Tumor Immunity in Melanoma. Journal of Pigmentary Disorders, 2014, 01, .	0.2	0
197	Predictors of Response to Immune Checkpoint Blockade. , 2018, , 525-544.		0
198	Microbiome and Melanoma. , 2019, , 287-302.		0

#	Article	IF	CITATIONS
199	Microbiome and Melanoma. , 2019, , 1-16.		0
200	Raising the bar: optimizing combinations of targeted therapy and immunotherapy. Annals of Translational Medicine, 2015, 3, 272.	1.7	0
201	Neoadjuvant therapy for melanoma: new and evolving concepts Clinical Advances in Hematology and Oncology, 2022, 20, 47-55.	0.3	0