
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8826840/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trifluoroethanol-induced Stabilization of the α-Helical Structure of β-Lactoglobulin: Implication for Non-hierarchical Protein Folding. Journal of Molecular Biology, 1995, 245, 180-194.	2.0	451
2	Biophysical Effect of Amino Acids on the Prevention of Protein Aggregation. Journal of Biochemistry, 2002, 132, 591-595.	0.9	236
3	Effect of Additives on Protein Aggregation. Current Pharmaceutical Biotechnology, 2009, 10, 400-407.	0.9	211
4	Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous solution. Journal Physics D: Applied Physics, 2014, 47, 285403.	1.3	209
5	Protein Inactivation by Lowâ€ŧemperature Atmospheric Pressure Plasma in Aqueous Solution. Plasma Processes and Polymers, 2012, 9, 77-82.	1.6	158
6	Prevention of thermal inactivation and aggregation of lysozyme by polyamines. FEBS Journal, 2003, 270, 4547-4554.	0.2	119
7	Specific Decrease in Solution Viscosity of Antibodies by Arginine for Therapeutic Formulations. Molecular Pharmaceutics, 2014, 11, 1889-1896.	2.3	95
8	Mechanistic insights into protein precipitation by alcohol. International Journal of Biological Macromolecules, 2012, 50, 865-871.	3.6	84
9	Arginine-Assisted Solubilization System for Drug Substances: Solubility Experiment and Simulation. Journal of Physical Chemistry B, 2010, 114, 13455-13462.	1.2	82
10	Discovery of posttranslational maturation by self-subunit swapping. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14849-14854.	3.3	80
11	Viscosity Control of Protein Solution by Small Solutes: A Review. Current Protein and Peptide Science, 2018, 19, 746-758.	0.7	79
12	Synergistic solubilization of porcine myosin in physiological salt solution by arginine. International Journal of Biological Macromolecules, 2013, 62, 647-651.	3.6	78
13	Arginine ethylester prevents thermal inactivation and aggregation of lysozyme. FEBS Journal, 2004, 271, 3242-3247.	0.2	75
14	High-resolution X-ray analysis reveals binding of arginine to aromatic residues of lysozyme surface: implication of suppression of protein aggregation by arginine. Protein Engineering, Design and Selection, 2011, 24, 269-274.	1.0	75
15	Arginine Increases the Solubility of Coumarin: Comparison with Salting-in and Salting-out Additives. Journal of Biochemistry, 2008, 144, 363-369.	0.9	68
16	Characterization of phytochelatin synthase-like protein encoded by alr0975 from a prokaryote, Nostoc sp. PCC 7120. Biochemical and Biophysical Research Communications, 2004, 315, 751-755.	1.0	65
17	Arginine and lysine reduce the high viscosity of serum albumin solutions for pharmaceutical injection. Journal of Bioscience and Bioengineering, 2014, 117, 539-543.	1.1	61
18	Regulation of Lysozyme Activity Based on Thermotolerant Protein/Smart Polymer Complex Formation. Journal of the American Chemical Society, 2009, 131, 6549-6553.	6.6	59

#	Article	IF	CITATIONS
19	Effects of alcohol on the solubility and structure of native and disulfide-modified bovine serum albumin. International Journal of Biological Macromolecules, 2012, 50, 1286-1291.	3.6	59
20	1,6-hexanediol rapidly immobilizes and condenses chromatin in living human cells. Life Science Alliance, 2021, 4, e202001005.	1.3	59
21	l-Argininamide improves the refolding more effectively than l-arginine. Journal of Biotechnology, 2007, 130, 153-160.	1.9	58
22	Molecular mechanism of plasma sterilization in solution with the reduced pH method: importance of permeation of HOO radicals into the cell membrane. Journal Physics D: Applied Physics, 2013, 46, 295402.	1.3	51
23	Co-aggregation of ovalbumin and lysozyme. Food Hydrocolloids, 2017, 67, 206-215.	5.6	48
24	Indispensable structure of solution additives to prevent inactivation of lysozyme for heating and refolding. Biotechnology Progress, 2009, 25, 1515-1524.	1.3	47
25	Heat-induced formation of myosin oligomer-soluble filament complex in high-salt solution. International Journal of Biological Macromolecules, 2015, 73, 17-22.	3.6	47
26	Extraction and purification of human interleukin-10 from transgenic rice seeds. Protein Expression and Purification, 2010, 72, 125-130.	0.6	44
27	Enzyme Hyperactivation System Based on a Complementary Charged Pair of Polyelectrolytes and Substrates. Langmuir, 2014, 30, 3826-3831.	1.6	44
28	Amidated amino acids are prominent additives for preventing heat-induced aggregation of lysozyme. Journal of Bioscience and Bioengineering, 2007, 103, 440-443.	1.1	43
29	Comparative analysis of the two-step reaction catalyzed by prokaryotic and eukaryotic phytochelatin synthase by an ion-pair liquid chromatography assay. Planta, 2005, 222, 181-191.	1.6	42
30	Diamines prevent thermal aggregation and inactivation of lysozyme. Journal of Bioscience and Bioengineering, 2005, 100, 556-561.	1.1	42
31	Amino Acid Esters Prevent Thermal Inactivation and Aggregation of Lysozyme. Biotechnology Progress, 2008, 21, 640-643.	1.3	42
32	One-Dimensional Protein-Based Nanoparticles Induce Lipid Bilayer Disruption: Carbon Nanotube Conjugates and Amyloid Fibrils. Langmuir, 2010, 26, 17256-17259.	1.6	41
33	Thermal Aggregation of Hen Egg White Proteins in the Presence of Salts. Protein Journal, 2015, 34, 212-219.	0.7	41
34	Arginine controls heatâ€induced cluster–cluster aggregation of lysozyme at around the isoelectric point. Biopolymers, 2011, 95, 695-701.	1.2	39
35	Correlation Between Thermal Aggregation and Stability of Lysozyme with Salts Described by Molar Surface Tension Increment: An Exceptional Propensity of Ammonium Salts as Aggregation Suppressor. Protein Journal, 2007, 26, 423-433.	0.7	38
36	Improved Complementary Polymer Pair System: Switching for Enzyme Activity by PEGylated Polymers. Langmuir, 2012, 28, 4334-4338.	1.6	38

#	Article	IF	CITATIONS
37	Comparative analyses of the conformational stability of a hyperthermophilic protein and its mesophilic counterpart. FEBS Journal, 2001, 268, 4144-4150.	0.2	37
38	Systematic Analysis of Aggregates from 38 Kinds of Non Disease-Related Proteins: Identifying the Intrinsic Propensity of Polypeptides to Form Amyloid Fibrils. Bioscience, Biotechnology and Biochemistry, 2007, 71, 1313-1321.	0.6	37
39	Effects of alkyl chain length of gallate on self-association and membrane binding. Journal of Biochemistry, 2011, 150, 165-171.	0.9	36
40	Arginine increases the solubility of alkyl gallates through interaction with the aromatic ring. Journal of Biochemistry, 2011, 149, 389-394.	0.9	36
41	Salt effects on the picosecond dynamics of lysozyme hydration water investigated by terahertz time-domain spectroscopy and an insight into the Hofmeister series for protein stability and solubility. Physical Chemistry Chemical Physics, 2016, 18, 15060-15069.	1.3	36
42	Quadruplex Folding Promotes the Condensation of Linker Histones and DNAs via Liquid–Liquid Phase Separation. Journal of the American Chemical Society, 2021, 143, 9849-9857.	6.6	36
43	Differences in the Effects of Solution Additives on Heat―and Refoldingâ€Induced Aggregation. Biotechnology Progress, 2008, 24, 436-443.	1.3	35
44	Molecular Dynamics Simulation of the Arginine-Assisted Solubilization of Caffeic Acid: Intervention in the Interaction. Journal of Physical Chemistry B, 2013, 117, 7518-7527.	1.2	35
45	Chelation of Cadmium Ions by Phytochelatin Synthase: Role of the Cystein-rich C-Terminal. Analytical Sciences, 2008, 24, 277-281.	0.8	34
46	Adsorption and Disruption of Lipid Bilayers by Nanoscale Protein Aggregates. Langmuir, 2012, 28, 3887-3895.	1.6	32
47	Noncovalent PEGylation of l-Asparaginase Using PEGylated Polyelectrolyte. Journal of Pharmaceutical Sciences, 2015, 104, 587-592.	1.6	32
48	Arginine prevents thermal aggregation of hen egg white proteins. Food Research International, 2017, 97, 272-279.	2.9	32
49	Charge state of arginine as an additive on heat-induced protein aggregation International Journal of Biological Macromolecules, 2016, 87, 563-569.	3.6	31
50	Aggregative protein–polyelectrolyte complex for high-concentration formulation of protein drugs. International Journal of Biological Macromolecules, 2017, 100, 11-17.	3.6	31
51	Co-aggregation of ovotransferrin and lysozyme. Food Hydrocolloids, 2019, 89, 416-424.	5.6	31
52	Small Amine Molecules: Solvent Design Toward Facile Improvement of Protein Stability Against Aggregation and Inactivation. Current Pharmaceutical Biotechnology, 2015, 17, 116-125.	0.9	29
53	Coacervates and coaggregates: Liquid–liquid and liquid–solid phase transitions by native and unfolded protein complexes. International Journal of Biological Macromolecules, 2018, 120, 10-18.	3.6	29
54	Arginine Inhibits Adsorption of Proteins on Polystyrene Surface. PLoS ONE, 2013, 8, e70762.	1.1	28

KENTARO SHIRAKI

#	Article	IF	CITATIONS
55	Dissolution of protein aggregation by small amine compounds. Science and Technology of Advanced Materials, 2003, 4, 55-59.	2.8	27
56	The solubility of nucleobases in aqueous arginine solutions. Archives of Biochemistry and Biophysics, 2010, 497, 90-96.	1.4	27
57	Protein–Poly(amino acid) Complex Precipitation for High-Concentration Protein Formulation. Journal of Pharmaceutical Sciences, 2014, 103, 2248-2254.	1.6	26
58	Enzyme switch by complementary polymer pair system (CPPS). Soft Matter, 2010, 6, 5320.	1.2	25
59	Ultrafast vibrational motion of carbon nanotubes in different pH environments. Physical Review B, 2009, 80, .	1.1	24
60	Mechanism of co-aggregation in a protein mixture with small additives. International Journal of Biological Macromolecules, 2018, 107, 1428-1437.	3.6	24
61	Liquid Droplet of Protein-Polyelectrolyte Complex for High-Concentration Formulations. Journal of Pharmaceutical Sciences, 2018, 107, 2713-2719.	1.6	24
62	Screening for Stable Mutants with Amino Acid Pairs Substituted for the Disulfide Bond between Residues 14 and 38 of Bovine Pancreatic Trypsin Inhibitor (BPTI). Journal of Biological Chemistry, 2002, 277, 51043-51048.	1.6	23
63	Mechanism of protein desorption from 4-mercaptoethylpyridine resins by arginine solutions. Journal of Chromatography A, 2014, 1373, 141-148.	1.8	23
64	Protein-poly(amino acid) precipitation stabilizes a therapeutic protein l-asparaginase against physicochemical stress. Journal of Bioscience and Bioengineering, 2015, 120, 720-724.	1.1	22
65	Thermal aggregation of human immunoglobulin G in arginine solutions: Contrasting effects of stabilizers and destabilizers. International Journal of Biological Macromolecules, 2017, 104, 650-655.	3.6	22
66	High temperature increases the refolding yield of reduced lysozyme: implication for the productive process for folding. Biotechnology Progress, 2004, 20, 1128-1133.	1.3	21
67	Polyethylene glycol behaves like weak organic solvent. Biopolymers, 2012, 97, 117-122.	1.2	21
68	Effect of additives on liquid droplets and aggregates of proteins. Biophysical Reviews, 2020, 12, 587-592.	1.5	21
69	Relationship between heat-induced fibrillogenicity and hemolytic activity of thermostable direct hemolysin and a related hemolysin of Vibrio parahaemolyticus. FEMS Microbiology Letters, 2011, 318, 10-17.	0.7	20
70	Poly(acrylic acid) is a common noncompetitive inhibitor for cationic enzymes with high affinity and reversibility. Journal of Polymer Science Part A, 2011, 49, 3835-3841.	2.5	20
71	Dependence of ethanol effects on protein charges. International Journal of Biological Macromolecules, 2014, 68, 169-172.	3.6	20
72	Arginine is a disease modifier for polyQ disease models that stabilizes polyQ protein conformation. Brain, 2020, 143, 1811-1825.	3.7	20

#	Article	IF	CITATIONS
73	Electrostatic role of aromatic ring stacking in the pH-sensitive modulation of a chymotrypsin-type serine protease,Achromobacterprotease I. FEBS Journal, 2002, 269, 4152-4158.	0.2	19
74	Enzymatic fingerprinting of structurally similar homologous proteins using polyion complex library constructed by tuning PEGylated polyamine functionalities. Analyst, The, 2014, 139, 6100-6103.	1.7	19
75	Stress Tolerance of Antibody–Poly(Amino Acid) Complexes for Improving the Stability of High Concentration Antibody Formulations. Journal of Pharmaceutical Sciences, 2015, 104, 2457-2463.	1.6	19
76	Arginine suppresses opalescence and liquid–liquid phase separation in IgG solutions. International Journal of Biological Macromolecules, 2018, 118, 1708-1712.	3.6	19
77	Controlled Dispersion and Purification of Protein–Carbon Nanotube Conjugates Using Guanidine Hydrochloride. Chemistry - A European Journal, 2010, 16, 12221-12228.	1.7	18
78	Degeneration of amyloid-ß fibrils caused by exposure to low-temperature atmospheric-pressure plasma in aqueous solution. Applied Physics Letters, 2014, 104, .	1.5	18
79	Effects of multivalency and hydrophobicity of polyamines on enzyme hyperactivation of α-chymotrypsin. Journal of Molecular Catalysis B: Enzymatic, 2015, 115, 135-139.	1.8	18
80	In Vitro Heat Effect on Functional and Conformational Changes of Cyclodextrin Glucanotransferase from Hyperthermophilic Archaea. Biochemical and Biophysical Research Communications, 1999, 265, 57-61.	1.0	17
81	Synergistically Enhanced Dispersion of Native Protein–Carbon Nanotube Conjugates by Fluoroalcohols in Aqueous Solution. Chemistry - A European Journal, 2009, 15, 9905-9910.	1.7	17
82	Why do solution additives suppress the heatâ€induced inactivation of proteins? Inhibition of chemical modifications. Biotechnology Progress, 2011, 27, 855-862.	1.3	17
83	Observation of salt effects on hydration water of lysozyme in aqueous solution using terahertz time-domain spectroscopy. Applied Physics Letters, 2013, 103, .	1.5	17
84	Cysteine inhibits amyloid fibrillation of lysozyme and directs the formation of small wormâ€like aggregates through nonâ€covalent interactions. Biotechnology Progress, 2014, 30, 470-478.	1.3	17
85	Liquid Chromatographic Analysis of the Interaction between Amino Acids and Aromatic Surfaces Using Single-Wall Carbon Nanotubes. Langmuir, 2015, 31, 8923-8929.	1.6	17
86	A Second Lysine-Specific Serine Protease from Lysobacter sp. Strain IB-9374. Journal of Bacteriology, 2004, 186, 5093-5100.	1.0	16
87	Functional analysis of phytochelatin synthase from Arabidopsis thaliana and its expression in Escherichia coli and Saccharomyces cerevisiae. Science and Technology of Advanced Materials, 2004, 5, 377-381.	2.8	16
88	One-Step Identification of Antibody Degradation Pathways Using Fluorescence Signatures Generated by Cross-Reactive DNA-Based Arrays. Analytical Chemistry, 2017, 89, 7818-7822.	3.2	16
89	Allantoin and hydantoin as new protein aggregation suppressors. International Journal of Biological Macromolecules, 2018, 114, 497-503.	3.6	16
90	Glycine amide shielding on the aromatic surfaces of lysozyme: Implication for suppression of protein aggregation. FEBS Letters, 2011, 585, 555-560.	1.3	15

KENTARO SHIRAKI

#	Article	IF	CITATIONS
91	Feasibility of Antibody–Poly(Glutamic Acid) Complexes: Preparation of High-Concentration Antibody Formulations and Their Pharmaceutical Properties. Journal of Pharmaceutical Sciences, 2015, 104, 1929-1937.	1.6	15
92	Noncovalent PEGylation through Protein–Polyelectrolyte Interaction: Kinetic Experiment and Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2017, 121, 6785-6791.	1.2	15
93	Effects of Arginine on Multimodal Chromatography: Experiments and Simulations. Current Protein and Peptide Science, 2018, 20, 40-48.	0.7	15
94	Dynamic behavior of liquid droplets with enzyme compartmentalization triggered by sequential glycolytic enzyme reactions. Chemical Communications, 2021, 57, 12544-12547.	2.2	15
95	Contribution of an Imidazole-Indole Stack to High Catalytic Potency of a Lysine-Specific Serine Protease, Achromobacter Protease I. Journal of Biochemistry, 2002, 131, 213-218.	0.9	14
96	trans-Cyclohexanediamines Prevent Thermal Inactivation of Protein: Role of Hydrophobic and Electrostatic Interactions. Protein Journal, 2008, 27, 253-257.	0.7	14
97	Effect of amino acids and amino acid derivatives on crystallization of hemoglobin and ribonuclease A. Journal of Synchrotron Radiation, 2008, 15, 316-318.	1.0	14
98	Stabilizing and destabilizing effects of arginine on deoxyribonucleic acid. International Journal of Biological Macromolecules, 2010, 46, 217-222.	3.6	14
99	Different mechanisms of action of poly(ethylene glycol) and arginine on thermal inactivation of lysozyme and ribonuclease A. Biotechnology and Bioengineering, 2012, 109, 2543-2552.	1.7	14
100	Effect of additives on liquid droplet of protein–polyelectrolyte complex for high-concentration formulations. Journal of Chemical Physics, 2019, 150, 064903.	1.2	14
101	Effect of an amyloidogenic sequence attached to yellow fluorescent protein. Proteins: Structure, Function and Bioinformatics, 2008, 72, 811-821.	1.5	13
102	Comparative analysis of amino acids and amino-acid derivatives in protein crystallization. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 744-749.	0.7	13
103	Hyperactivation of \hat{I}_{\pm} -chymotrypsin by the Hofmeister effect. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, S432-S438.	1.8	13
104	Wrap-and-Strip Technology of Protein–Polyelectrolyte Complex for Biomedical Application. Current Medicinal Chemistry, 2016, 23, 276-289.	1.2	13
105	Characterization of heat-induced aggregates of concanavalin A using fluorescent probes. Science and Technology of Advanced Materials, 2004, 5, 339-341.	2.8	12
106	Role of C-terminal Cys-rich Region of Phytochelatin Synthase in Tolerance to Cadmium Ion Toxicity. Journal of Plant Biochemistry and Biotechnology, 2009, 18, 175-180.	0.9	12
107	Ternary System of Solution Additives with Arginine and Salt for Refolding of Beta-Galactosidase. Protein Journal, 2010, 29, 161-166.	0.7	12
108	Enhanced solubilization of membrane proteins by alkylamines and polyamines. Protein Science, 2010, 19, 486-493.	3.1	12

#	Article	IF	CITATIONS
109	Salt-dependent elution of uncharged aromatic solutes in ion-exchange chromatography. Journal of Chromatography A, 2018, 1546, 46-55.	1.8	12
110	Enhancing the tolerance of zebrafish (Danio rerio) to heavy metal toxicity by the expression of plant phytochelatin synthase. Journal of Biotechnology, 2006, 122, 316-325.	1.9	11
111	Recovery Method for Surimi Wash-water Protein by pH Shift and Heat Treatment. Food Science and Technology Research, 2016, 22, 743-749.	0.3	11
112	Selective separation method of aggregates from IgG solution by aqueous two-phase system. Protein Expression and Purification, 2019, 161, 57-62.	0.6	11
113	Optical Fingerprints of Proteases and Their Inhibited Complexes Provided by Differential Cross-Reactivity of Fluorophore-Labeled Single-Stranded DNA. ACS Applied Materials & Interfaces, 2019, 11, 47428-47436.	4.0	11
114	Mutational Effects on O6-Methylguanine-DNA Methyltransferase from Hyperthermophile: Contribution of Ion-Pair Network to Protein Thermostability. Journal of Biochemistry, 2004, 135, 525-532.	0.9	10
115	Enzymatic Analysis of a Thermostabilized Mutant of an <i>Escherichia coli</i> Hygromycin B Phosphotransferase. Bioscience, Biotechnology and Biochemistry, 2008, 72, 2467-2471.	0.6	10
116	Directed Evolution for Thermostabilization of a Hygromycin B Phosphotransferase from <i>Streptomyces hygroscopicus</i> . Bioscience, Biotechnology and Biochemistry, 2013, 77, 2234-2241.	0.6	10
117	Cysteine inhibits the fibrillisation and cytotoxicity of amyloid-Î ² 40 and 42: implications for the contribution of the thiophilic interaction. Physical Chemistry Chemical Physics, 2014, 16, 3566.	1.3	10
118	A study of the small-molecule system used to investigate the effect of arginine on antibody elution in hydrophobic charge-induction chromatography. Protein Expression and Purification, 2017, 129, 44-52.	0.6	10
119	Effect of counter ions of arginine as an additive for the solubilization of protein and aromatic compounds. International Journal of Biological Macromolecules, 2016, 91, 471-476.	3.6	9
120	Noncovalent PEGylation-based enzyme switch in physiological saline conditions using quaternized polyamines. Colloid and Polymer Science, 2016, 294, 1551-1556.	1.0	9
121	Lowering the viscosity of a high-concentration antibody solution by protein–polyelectrolyte complex. Journal of Bioscience and Bioengineering, 2022, 133, 17-24.	1.1	9
122	Stretched-Exponential Analysis of Heat-Induced Aggregation of Apo-Concanavalin A. Protein Journal, 2005, 24, 193-199.	0.7	8
123	Synthesis of graphene nanoribbons from amyloid templates by gallium vapor-assisted solid-phase graphitization. Applied Physics Letters, 2014, 104, 243101.	1.5	8
124	A new pH-responsive peptide tag for protein purification. Protein Expression and Purification, 2018, 146, 91-96.	0.6	8
125	Hyperactivation of serine proteases by the Hofmeister effect. Molecular Catalysis, 2018, 455, 32-37.	1.0	8
126	Effect of Electrolyte Ions on the Stability of Flavin Adenine Dinucleotideâ€Dependent Glucose Dehydrogenase. ChemElectroChem, 2019, 6, 1028-1031.	1.7	8

#	Article	IF	CITATIONS
127	Conformational Stability of a Hyperthermophilic Protein in Various Conditions for Denaturation. Electrochemistry, 2001, 69, 949-952.	0.6	8
128	Charge‧eparated Fmocâ€Peptide β‧heets: Sequence‧econdary Structure Relationship for Arranging Charged Side Chains on Both Sides. Asian Journal of Organic Chemistry, 2014, 3, 1182-1188.	1.3	7
129	Arginine Suppresses the Adsorption of Lysozyme onto Single-wall Carbon Nanotubes. Chemistry Letters, 2016, 45, 952-954.	0.7	7
130	Hydantoin and Its Derivatives Reduce the Viscosity of Concentrated Antibody Formulations by Inhibiting Associations via Hydrophobic Amino Acid Residues. Industrial & Engineering Chemistry Research, 2019, 58, 16296-16306.	1.8	7
131	Non-chromatographic purification of Teriparatide with a pH-responsive CspB tag. Protein Expression and Purification, 2019, 155, 66-71.	0.6	7
132	Control of Aggregation, Coaggregation, and Liquid Droplet of Proteins Using Small Additives. Current Pharmaceutical Biotechnology, 2019, 19, 946-955.	0.9	7
133	Equilibrium and Kinetic Stability of a Hyperthermophilic Protein, O6-Methylguanine-DNA Methyltransferase under Various Extreme Conditions. Journal of Biochemistry, 2004, 136, 503-508.	0.9	6
134	Unfolding mechanism of a hyperthermophilic protein O6-methylguanine-DNA methyltransferase. Biophysical Chemistry, 2005, 116, 97-104.	1.5	6
135	Improving the Heat Resistance of Ribonuclease A by the Addition of Poly(<i>N</i> , <i>N</i> â€diethylaminoethyl methacrylate)â€ <i>graft</i> â€poly(ethylene glycol) (PEAMAâ€ <i>g</i> â€PEG). Macromolecular Bioscience, 2010, 10, 853-859.	2.1	6
136	Structure of three Humanin peptides with different activities upon interaction with liposome. International Journal of Biological Macromolecules, 2011, 48, 360-363.	3.6	6
137	Solubility Parameters of Amino Acids on Liquid–Liquid Phase Separation and Aggregation of Proteins. Frontiers in Cell and Developmental Biology, 2021, 9, 691052.	1.8	6
138	Aggregation of hen egg white proteins with additives during agitation. LWT - Food Science and Technology, 2021, 146, 111378.	2.5	6
139	Structure changes of natively disordered Humanin in the presence of lipid. International Journal of Biological Macromolecules, 2010, 46, 375-379.	3.6	5
140	Trimethylamine N-oxide (TMAO) is a counteracting solute of benzyl alcohol for multi-dose formulation of immunoglobulin. International Journal of Biological Macromolecules, 2018, 107, 984-989.	3.6	5
141	Effects of allantoin and dimethyl sulfoxide on the thermal aggregation of lysozyme. International Journal of Biological Macromolecules, 2018, 119, 180-185.	3.6	5
142	Contribution of protein-surface ion pairs of a hyperthermophilic protein on thermal and thermodynamic stability. Journal of Bioscience and Bioengineering, 2004, 97, 75-77.	1.1	4
143	Synthesis of Optically Active Polyamines Based on Chiral 1-Cyclohexylethylamine Derivatives. Polymer Journal, 2009, 41, 503-507.	1.3	4
144	Drug solubilization effect of lauroyl-L-glutamate. Journal of Biochemistry, 2012, 151, 27-33.	0.9	4

#	Article	IF	CITATIONS
145	Glutathione Ethylester, a Novel Protein Refolding Reagent, Enhances both the Efficiency of Refolding and Correct Disulfide Formation. Protein Journal, 2012, 31, 499-503.	0.7	4
146	Specific solubilization of impurities in culture media: Arg solution improves purification of pH-responsive tag CspB50 with Teriparatide. Protein Expression and Purification, 2018, 146, 85-90.	0.6	4
147	Salt-containing aqueous two-phase system shows predictable partition of proteins with surface amino acids residues. International Journal of Biological Macromolecules, 2019, 133, 1182-1186.	3.6	4
148	The binding affinity of uncharged aromatic solutes for negatively charged resins is enhanced by cations via cation–π interactions: The case of sodium ion and arginine. Journal of Chromatography A, 2019, 1595, 97-107.	1.8	4
149	Class-like protein condensate for the long-term storage of proteins. International Journal of Biological Macromolecules, 2021, 182, 162-167.	3.6	4
150	Differences in interaction lead to the formation of different types of insulin amyloid. Scientific Reports, 2022, 12, .	1.6	4
151	Genetic, Enzymatic, and Structural Analyses of Phenylalanyl-tRNA Synthetase from Thermococcus kodakaraensis KOD1. Journal of Biochemistry, 2003, 134, 567-574.	0.9	3
152	Vibrational energy transfer from photoexcited carbon nanotubes to proteins observed by coherent phonon spectroscopy. Applied Physics Express, 2017, 10, 125101.	1.1	3
153	Hydration of Aqueous Polymers Investigated by Terahertz Spectroscopy and Principal Component Analysis. , 2018, , .		3
154	Aromatic interaction of hydantoin compounds leads to virucidal activities. Biophysical Chemistry, 2021, 275, 106621.	1.5	3
155	Small Molecular Additives to Prevent Protein Inactivation and Aggregation. Seibutsu Butsuri, 2004, 44, 87-90.	0.0	3
156	Arginine and its Derivatives Suppress the Opalescence of an Antibody Solution. Journal of Pharmaceutical Sciences, 2022, 111, 1126-1132.	1.6	3
157	Classification of protein solubilizing solutes by fluorescence assay. International Journal of Biological Macromolecules, 2022, 203, 695-702.	3.6	3
158	Mechanism of Enhanced Dispersion of Single-Walled Carbon Nanotubes with Proteins by Alcohols and Chaotropes. Japanese Journal of Applied Physics, 2010, 49, 06GJ10.	0.8	2
159	Oligoethylene glycols prevent thermal aggregation of αâ€chymotrypsin in a temperatureâ€dependent manner: Implications for design guidelines. Biotechnology Progress, 2013, 29, 1325-1330.	1.3	2
160	Synthesis of graphene nanoribbons from amyloid fibrils by solid-phase graphitization using liquid gallium catalyst. Materials Research Society Symposia Proceedings, 2014, 1658, 82.	0.1	2
161	Array-based Generation of Response Patterns with Common Fluorescent Dyes for Identification of Proteins and Cells. Analytical Sciences, 2019, 35, 99-102.	0.8	2
162	The effects of N-acetyltryptophan and caprylic acid on protein aggregation. Journal of Biological Macromolecules, 2016, 16, 3-7.	0.2	2

#	Article	IF	CITATIONS
163	Two Elution Mechanisms of MEP Chromatography. Current Protein and Peptide Science, 2018, 20, 28-33.	0.7	2
164	Affinity of aromatic amino acid side chains in amino acid solvents. Biophysical Chemistry, 2022, 287, 106831.	1.5	2
165	Insight into the protein salting-in mechanism of arginine, magnesium chloride and ethylene glycol: Solvent interaction with aromatic solutes. International Journal of Biological Macromolecules, 2021, 188, 670-677.	3.6	1
166	Transformation from a Metastable Structure to Native Form of Hyperthermophilic Proteins:A Phenomenon Known as Heat Maturation. Seibutsu Butsuri, 2002, 42, 185-188.	0.0	1
167	Solution design to extend the pH range of the pH-responsive precipitation of a CspB fusion protein. Protein Expression and Purification, 2022, 195-196, 106091.	0.6	1
168	2P104 Structural implications of an amyloidogenic sequence attached to a folded protein(31. Protein) Tj ETQq0 C Butsuri, 2006, 46, S321.	0 rgBT /C 0.0	Overlock 107 0
169	3P-032 Poly (allylamine) prevents heat-induced inactivation of lysozyme and ribonuclease A(The 46th) Tj ETQq1 1	0,784314 0.0	4 rgBT /Over
170	1P-339 Improvement in dispersion of single-walled carbon nanotube by using proteins(The 46th Annual) Tj ETQqC	00 orgBT	/Qverlock 10
171	2P-060 Regulation of enzymatic activity using complementary polyelectrolyte pair(Protein:Function,The 47th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2009, 49, S116.	0.0	Ο
172	3P-272 Adsorption and structure change of protein on carbon nanotube surfaces(Miscellaneous) Tj ETQq0 0 0 rg	BT /Overlo 0.0	ick 10 Tf 50
173	Thermal-Assisted Refolding: Dilution Folding Initiated at High Temperature. Current Pharmaceutical Biotechnology, 2010, 11, 306-308.	0.9	0
174	2P242 Quantitative Analysis of the interaction between Alkyl Gallates and Phospholipid Bilayers(The) Tj ETQq0 0	0 rgBT /O∖	verlock 10 Tf
175	3P080 Molecular mechanism of the solution additves on thermal inactivation of proteins(Protein:) Tj ETQq1 1 0.7 S158-S159.	84314 rgl 0.0	BT /Overlock 0
176	1D1424 The influence of buffer species on the thermostability of proteins(Protein: Property 1,The 49th) Tj ETQq0	0.0 rgBT	Oyerlock 10
177	3C1558 Destruction of Amyloid Fibrils by Low-Temperature Atmospheric Pressure Plasma(3C Molecular) Tj ETQq1	1 0.7843 0.0	314 rgBT /Ov 0
178	Terahertz spectroscopic study of ion effects on protein hydration. , 2015, , .		0
179	生体機èf½æ€§ã,«ãf¼ãfœãf³ãfŠãfŽç²'åã®å‰µæˆ• Hosokawa Powder Technology Foundation ANNUAL	. REP ORT,	2008, 16, 1
180	2P348 Protein-absorbed carbon nanotubes and amyloid fibrils disrupt phospholipid dilayer membranes : implications for their biological impact(The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2010, 50, S144.	0.0	0

#	Article	IF	CITATIONS
181	Opalescence Arising from Network Assembly in Antibody Solution. Molecular Pharmaceutics, 2022, 19, 1160-1167.	2.3	0