
Jianyun Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8826639/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modulation of Charge Transport at Grain Boundaries in SrTiO ₃ : Toward a High Thermoelectric Power Factor at Room Temperature. ACS Applied Materials & Interfaces, 2021, 13, 11879-11890.	8.0	36
2	A facile bioinspired strategy for accelerating water collection enabled by passive radiative cooling and wettability engineering. Materials and Design, 2021, 206, 109829.	7.0	29
3	Laser solid-phase synthesis of single-atom catalysts. Light: Science and Applications, 2021, 10, 168.	16.6	27
4	A visibly transparent radiative cooling film with self-cleaning function produced by solution processing. Journal of Materials Science and Technology, 2021, 90, 76-84.	10.7	42
5	Unlocking the energy storage potential of polypyrrole via electrochemical graphene oxide for high performance zinc-ion hybrid supercapacitors. Journal of Power Sources, 2021, 516, 230663.	7.8	36
6	3D Hierarchically Structured CoS Nanosheets: Li ⁺ Storage Mechanism and Application of the High-Performance Lithium-Ion Capacitors. ACS Applied Materials & Interfaces, 2020, 12, 3709-3718.	8.0	72
7	Pulsed electrochemical fabrication of graphene/polypyrrole composite gel films for high performance and flexible supercapacitors. Electrochimica Acta, 2020, 361, 137036.	5.2	34
8	Enhanced thermoelectric performance of poly(3-substituted thiophene)/single-walled carbon nanotube composites via polar side chain modification. Composites Science and Technology, 2020, 199, 108359.	7.8	17
9	Robust Inorganic Daytime Radiative Cooling Coating Based on a Phosphate Geopolymer. ACS Applied Materials & Interfaces, 2020, 12, 54963-54971.	8.0	53
10	High-Power Energy Storage from Carbon Electrodes Using Highly Acidic Electrolytes. Journal of Physical Chemistry C, 2020, 124, 20701-20711.	3.1	3
11	Unravelling the Mechanism of Rechargeable Aqueous Zn–MnO ₂ Batteries: Implementation of Charging Process by Electrodeposition of MnO ₂ . ChemSusChem, 2020, 13, 4103-4110.	6.8	74
12	Electronic devices based on solution-processed two-dimensional materials. , 2020, , 351-384.		6
13	Laser Assisted Solution Synthesis of High Performance Graphene Supported Electrocatalysts. Advanced Functional Materials, 2020, 30, 2001756.	14.9	23
14	A Universal Electrolyte Formulation for the Electrodeposition of Pristine Carbon and Polypyrrole Composites for Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 13386-13399.	8.0	35
15	Screen-Printing of a Highly Conductive Graphene Ink for Flexible Printed Electronics. ACS Applied Materials & Interfaces, 2019, 11, 32225-32234.	8.0	174
16	Graphene/Polyelectrolyte Layer-by-Layer Coatings for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2019, 2, 5272-5281.	5.0	40
17	Systematic Comparison of Graphene Materials for Supercapacitor Electrodes. ChemistryOpen, 2019, 8, 418-428.	1.9	36
18	Supercapacitor Electrodes from the in Situ Reaction between Two-Dimensional Sheets of Black Phosphorus and Graphene Oxide. ACS Applied Materials & Interfaces, 2018, 10, 10330-10338.	8.0	44

Jianyun Cao

#	Article	IF	CITATIONS
19	Electrically bioactive coating on Ti with bi-layered SnO ₂ –TiO ₂ hetero-structure for improving osteointegration. Journal of Materials Chemistry B, 2018, 6, 3989-3998.	5.8	5
20	Enhanced Osseointegration of Hierarchically Structured Ti Implant with Electrically Bioactive SnO ₂ –TiO ₂ Bilayered Surface. ACS Applied Materials & Interfaces, 2018, 10, 30191-30200.	8.0	26
21	Lasting high surface energy coâ€polyester ionomer and its application in laminated tinâ€free steel. Journal of Applied Polymer Science, 2017, 134, 45174.	2.6	1
22	Facile Co-Electrodeposition Method for High-Performance Supercapacitor Based on Reduced Graphene Oxide/Polypyrrole Composite Film. ACS Applied Materials & Interfaces, 2017, 9, 19831-19842.	8.0	108
23	Microarc oxidation coating covered Ti implants with micro-scale gouges formed by a multi-step treatment for improving osseointegration. Materials Science and Engineering C, 2017, 76, 908-917.	7.3	24
24	Effect of heat treatment atmosphere on the structure and apatite-inducing ability of Ca, P, Si and Na incorporated microarc oxidation coating on titanium. Surface and Coatings Technology, 2017, 310, 190-198.	4.8	5
25	Two-Step Electrochemical Intercalation and Oxidation of Graphite for the Mass Production of Graphene Oxide. Journal of the American Chemical Society, 2017, 139, 17446-17456.	13.7	211
26	Graphene-enhanced electrodes for scalable supercapacitors. Electrochimica Acta, 2017, 257, 372-379.	5.2	71
27	Crystallization behavior of poly(ethylene terephthalateâ€ <i>co</i> â€neopentyl) Tj ETQq1 1 0.784314 rgBT /Ove application in laminated tinâ€free steel. Journal of Applied Polymer Science, 2015, 132, .	erlock 10 T 2.6	f 50 427 Tc 6
28	Three-dimensional graphene oxide/polypyrrole composite electrodes fabricated by one-step electrodeposition for high performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 14445-14457.	10.3	212
29	Materials and fabrication of electrode scaffolds for deposition of MnO2 and their true performance in supercapacitors. Journal of Power Sources, 2015, 293, 657-674.	7.8	93
30	The effect of NaOH concentration on the steam-hydrothermally treated bioactive microarc oxidation coatings containing Ca, P, Si and Na on pure Ti surface. Materials Science and Engineering C, 2015, 49, 669-680.	7.3	17
31	Synergistic Effects of Surface Chemistry and Topologic Structure from Modified Microarc Oxidation Coatings on Ti Implants for Improving Osseointegration. ACS Applied Materials & Interfaces, 2015, 7, 8932-8941.	8.0	74
32	H ₂ Ti ₅ O ₁₁ ·H ₂ O nanorod arrays formed on a Ti surface via a hybrid technique of microarc oxidation and chemical treatment. CrystEngComm, 2015, 17, 2705-2717.	2.6	9
33	Flexible and solid-state asymmetric supercapacitor based on ternary graphene/MnO2/carbon black hybrid film with high power performance. Electrochimica Acta, 2015, 182, 861-870.	5.2	77
34	Conformal coating containing Ca, P, Si and Na with double-level porous surface structure on titanium formed by a three-step microarc oxidation. RSC Advances, 2015, 5, 28908-28920.	3.6	16
35	The water-dependent decay mechanism of biaxially-oriented corona-treated polyethylene terephthalate films. RSC Advances, 2014, 4, 54805-54809.	3.6	6
36	Biocorrosion resistance of coated magnesium alloy by microarc oxidation in electrolyte containing zirconium and calcium salts. Frontiers of Materials Science, 2014, 8, 295-306.	2.2	10

Jianyun Cao

#	Article	IF	CITATIONS
37	Electron beam "ballooned―carbon sphere derived from graphene oxide by a hydrazine assisted hydrothermal method. RSC Advances, 2014, 4, 5826.	3.6	6
38	Graphene/carbon black hybrid film for flexible and high rate performance supercapacitor. Journal of Power Sources, 2014, 271, 269-277.	7.8	150
39	Hollow graphene spheres self-assembled from graphene oxide sheets by a one-step hydrothermal process. Carbon, 2013, 56, 389-391.	10.3	55
40	High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes. Journal of Electroanalytical Chemistry, 2013, 689, 201-206.	3.8	207
41	Ball-Milled Graphite as an Electrode Material for High Voltage Supercapacitor in Neutral Aqueous Electrolyte. Journal of the Electrochemical Society, 2012, 159, A579-A583.	2.9	48
42	Performances of high voltage electrochemical capacitor using ball-milled graphite/Mn3O4 composite electrodes. Journal of Electroanalytical Chemistry, 2012, 682, 23-28.	3.8	17