Jin Z Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8826600/publications.pdf

Version: 2024-02-01

4831 5244 32,755 340 87 171 citations h-index g-index papers 344 344 344 39277 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tailoring Surface Oxygen Vacancies in Tungsten Oxides for Surface Plasmon Resonance-Enhanced Near-Infrared Photoreduction of Cr(VI). ACS ES&T Water, 2023, 3, 1536-1546.	2.3	3
2	ACS Physical Chemistry Au: One Year In. ACS Physical Chemistry Au, 2022, 2, 1-2.	1.9	O
3	Near-Infrared Light Absorbing Silver-Coated Hollow Gold Nanostars for Surface-Enhanced Raman Scattering Detection of Bovine Serum Albumin Using Capping Ligand Exchange. Journal of Physical Chemistry C, 2022, 126, 1026-1035.	1.5	9
4	Impact of Molecular Ligands in the Synthesis and Transformation between Metal Halide Perovskite Quantum Dots and Magic Sized Clusters. ACS Physical Chemistry Au, 2022, 2, 156-170.	1.9	18
5	Novel Pt-Ni Electrocatalyst for Coal Electrolysis for Hydrogen Production. Journal of the Electrochemical Society, 2022, 169, 044514.	1.3	2
6	Disruption of dual homeostasis by a metal-organic framework nanoreactor for ferroptosis-based immunotherapy of tumor. Biomaterials, 2022, 284, 121502.	5.7	29
7	An Open Letter to Aspiring Authors. ACS Physical Chemistry Au, 2022, 2, 68-69.	1.9	3
8	Activation of TRPV1 by capsaicin-loaded CaCO3 nanoparticle for tumor-specific therapy. Biomaterials, 2022, 284, 121520.	5.7	27
9	Novel Pd–Cr electrocatalyst with low Pd content for coal electrolysis for hydrogen production. Journal of Power Sources, 2021, 483, 229175.	4.0	12
10	Designed synthesis of chlorine and nitrogen co-doped Ti3C2 MXene quantum dots and their outstanding hydroxyl radical scavenging properties. Journal of Materials Science and Technology, 2021, 78, 30-37.	5 . 6	43
11	Ultrastable Plasmonic Cu-Based Core–Shell Nanoparticles. Chemistry of Materials, 2021, 33, 695-705.	3.2	29
12	Tuning morphology-dependent localized surface plasmon resonance in quasi-metallic tungsten oxide nanostructures for enhanced photocatalysis. Journal of Materials Chemistry C, 2021, 9, 1614-1621.	2.7	23
13	Structural control and biomedical applications of plasmonic hollow gold nanospheres: A mini review. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1694.	3.3	8
14	Enhancing the Photoluminescence and Stability of Methylammonium Lead Halide Perovskite Nanocrystals with Phenylalanine. Journal of Physical Chemistry C, 2021, 125, 2793-2801.	1.5	11
15	Carbon Fibers Coated with Ternary Ni–Co–Se Alloy Particles as a Low-Cost Counter Electrode for Flexible Dye Sensitized Solar Cells. ACS Applied Energy Materials, 2021, 4, 870-878.	2.5	22
16	Design and preparation of three-dimensional hetero-electrocatalysts of NiCo-layered double hydroxide nanosheets incorporated with silver nanoclusters for enhanced oxygen evolution reactions. Nanoscale, 2021, 13, 11150-11160.	2.8	25
17	Interplay between Perovskite Magic-Sized Clusters and Amino Lead Halide Molecular Clusters. Research, 2021, 2021, 6047971.	2.8	13
18	Real-Time Monitoring of Aqueous Organic Reduction Reactions Using Ex Situ Fiber Optic Raman Spectroscopy. ACS Sustainable Chemistry and Engineering, 2021, 9, 6068-6078.	3.2	2

#	Article	IF	Citations
19	Three-dimensional core–shell CoFe Prussian blue analog at NiCoFe layered ternary hydroxide electrocatalyst for efficient oxygen evolution reaction. Applied Physics Letters, 2021, 118, .	1.5	13
20	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	7. 3	705
21	Scavenging activity and reaction mechanism of Ti3C2Tx MXene as a novel free radical scavenger. Ceramics International, 2021, 47, 16555-16561.	2.3	9
22	High Efficiency Luminescent Solar Concentrator based on Organoâ€Metal Halide Perovskite Quantum Dots with Plasmon Enhancement. Advanced Optical Materials, 2021, 9, 2100754.	3.6	16
23	Enhancing Defect Tolerance with Ligands at the Surface of Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 6299-6304.	2.1	20
24	Indole Alkaloids from a Soil-Derived <i>Clonostachys rosea</i> . Journal of Natural Products, 2021, 84, 2468-2474.	1.5	15
25	Highly Emissive and Stable Cs ₂ AgInCl ₆ Double Perovskite Nanocrystals by Bi ³⁺ Doping and Potassium Bromide Surface Passivation. Journal of Physical Chemistry C, 2021, 125, 18372-18379.	1.5	15
26	Synthesis and Optical Properties of Mn2+-Doped Amino Lead Halide Molecular Clusters Assisted by Chloride Ion. Journal of Physical Chemistry Letters, 2021, 12, 7497-7503.	2.1	8
27	Charge State of Au ₂₅ (SG) ₁₈ Nanoclusters Induced by Interaction with a Metal Organic Framework Support and Its Effect on Catalytic Performance. Journal of Physical Chemistry Letters, 2021, 12, 8003-8008.	2.1	7
28	Selective Thrombosis of Tumor for Enhanced Hypoxiaâ€Activated Prodrug Therapy. Advanced Materials, 2021, 33, e2104504.	11.1	45
29	Diverse anti-inflammation and anti-cancer polyketides isolated from the endophytic fungi Alternaria sp. MG1. Fìtoterapìâ, 2021, 153, 105000.	1.1	16
30	Ultrafast Study of Exciton Transfer in Sb(III)-Doped Two-Dimensional [NH ₃ (CH ₂) ₄ NH ₃]CdBr ₄ Perovskite. ACS Nano, 2021, 15, 15354-15361.	7.3	47
31	Interface engineering of heterojunction photocatalysts based on 1D nanomaterials. Catalysis Science and Technology, 2021, 11, 27-42.	2.1	86
32	Enhanced Photoluminescence of All-Inorganic Manganese Halide Perovskite-Analogue Nanocrystals by Lead Ion Incorporation. Journal of Physical Chemistry Letters, 2021, 12, 10204-10211.	2.1	16
33	Hollow Gold Nanosphere Templated Synthesis of PEGylated Hollow Gold Nanostars and Use for SERS Detection of Amyloid Beta in Solution. Journal of Physical Chemistry B, 2021, 125, 12344-12352.	1.2	6
34	ACS Physical Chemistry Au: A Journal Celebrating Open Science across the Broad Horizons of Physical Chemistry. ACS Physical Chemistry Au, 2021, 1, 1-2.	1.9	0
35	Nitrogen-Doped Ti ₂ C MXene Quantum Dots as Antioxidants. ACS Applied Nano Materials, 2021, 4, 12308-12315.	2.4	24
36	Modulating optical properties and interfacial electron transfer of CsPbBr3 perovskite nanocrystals via indium ion and chlorine ion co-doping. Journal of Chemical Physics, 2021, 155, 234701.	1.2	3

#	Article	IF	CITATIONS
37	Breaking Forbidden Transitions for Emission of Self-Trapped Excitons in Two Dimensional (F ₂ CHCH ₂ NH ₃) ₂ CdBr ₄ Perovskite through Pb Alloying. Journal of Physical Chemistry Letters, 2020, 11, 199-205.	2.1	50
38	Low-Temperature Energy Transfer <i>via</i> Self-Trapped Excitons in Mn ²⁺ -Doped 2D Organometal Halide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 10368-10374.	2.1	9
39	Ultrasmall Peptide-Coated Platinum Nanoparticles for Precise NIR-II Photothermal Therapy by Mitochondrial Targeting. ACS Applied Materials & Samp; Interfaces, 2020, 12, 39434-39443.	4.0	40
40	Miniature Hollow Gold Nanorods with Enhanced Effect for In Vivo Photoacoustic Imaging in the NIRâ€II Window. Small, 2020, 16, e2002748.	5.2	56
41	Modulating Charge Carrier Dynamics and Transfer via Surface Modifications in Organometallic Halide Perovskite Quantum Dots. Journal of Physical Chemistry Letters, 2020, 11, 7886-7892.	2.1	11
42	Recent advances in ultrathin two-dimensional materials and biomedical applications for reactive oxygen species generation and scavenging. Nanoscale, 2020, 12, 19516-19535.	2.8	65
43	Bandgap Engineering of Lead-Free Double Perovskite Cs ₂ AgInCl ₆ Nanocrystals via Cu ²⁺ -Doping. Journal of Physical Chemistry Letters, 2020, 11, 8392-8398.	2.1	68
44	Defect-Related Broadband Emission in Two-Dimensional Lead Bromide Perovskite Microsheets. Journal of Physical Chemistry Letters, 2020, 11, 8157-8163.	2.1	54
45	Varying the Concentration of Organic Acid and Amine Ligands Allows Tuning between Quantum Dots and Magic-Sized Clusters of CH ₃ NH ₃ PbBr ₃ Perovskite: Implications for Photonics and Energy Conversion. ACS Applied Nano Materials, 2020, 3, 12379-12387.	2.4	20
46	Hollow Au Nanosphere-Cu ₂ O Core–Shell Nanostructures with Controllable Core Surface Morphology. Journal of Physical Chemistry C, 2020, 124, 11333-11339.	1.5	21
47	Light-Induced Caspase-3-Responsive Chimeric Peptide for Effective PDT/Chemo Combination Therapy with Good Compatibility. ACS Applied Bio Materials, 2020, 3, 2392-2400.	2.3	0
48	Core/shell cable-like Ni3S2 nanowires/N-doped graphene-like carbon layers as composite electrocatalyst for overall electrocatalytic water splitting. Chemical Engineering Journal, 2020, 401, 126045.	6.6	134
49	Enhancing Charge Carrier Delocalization in Perovskite Quantum Dot Solids with Energetically Aligned Conjugated Capping Ligands. ACS Energy Letters, 2020, 5, 817-825.	8.8	58
50	Room temperature synthesis of cesium lead bromide perovskite magic sized clusters with controlled ratio of carboxylic acid and benzylamine capping ligands. Solar Energy Materials and Solar Cells, 2020, 208, 110341.	3.0	23
51	Dependence of stability and electronic and optical properties of perovskite quantum dots on capping ligand chain length. Journal of Chemical Physics, 2020, 152, 034701.	1.2	13
52	Enhanced Photogenerated Electron Transfer in a Semiartificial Photosynthesis System Based on Highly Dispersed Titanium Oxide Nanoparticles. Journal of Physical Chemistry Letters, 2020, 11, 1822-1827.	2.1	24
53	First Synthesis of Mn-Doped Cesium Lead Bromide Perovskite Magic Sized Clusters at Room Temperature. Journal of Physical Chemistry Letters, 2020, 11, 1162-1169.	2.1	41
54	Nitrogenâ€Doped Porous Carbon Cages for Electrocatalytic Reduction of Oxygen: Enhanced Performance with Iron and Cobalt Dual Metal Centers. ChemCatChem, 2020, 12, 3230-3239.	1.8	18

#	Article	IF	CITATIONS
55	Intracellular Ca2+ Cascade Guided by NIR-II Photothermal Switch for Specific Tumor Therapy. IScience, 2020, 23, 101049.	1.9	30
56	Cellulose as Sacrificial Biomass for Photocatalytic Hydrogen Evolution over Oneâ€dimensional CdS Loaded with NiS ₂ as a Cocatalyst. ChemistrySelect, 2020, 5, 1470-1477.	0.7	17
57	The effect of polymer and gold functionalization on the magnetic properties of magnetite nanoparticles. Biomedical Spectroscopy and Imaging, 2019, 7, 115-124.	1.2	2
58	A "Cocktail―Approach to Effective Surface Passivation of Multiple Surface Defects of Metal Halide Perovskites Using a Combination of Ligands. Journal of Physical Chemistry Letters, 2019, 10, 5055-5063.	2.1	26
59	Au Hollow Nanorods-Chimeric Peptide Nanocarrier for NIR-II Photothermal Therapy and Real-time Apoptosis Imaging for Tumor Theranostics. Theranostics, 2019, 9, 4971-4981.	4.6	44
60	Carbon Fiber Supported Pt-Co Electrocatalyst for Coal Electrolysis for Hydrogen Production. Journal of the Electrochemical Society, 2019, 166, E395-E400.	1.3	13
61	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry A, 2019, 123, 5837-5848.	1.1	2
62	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry B, 2019, 123, 5973-5984.	1.2	1
63	Tuning from Quantum Dots to Magic Sized Clusters of CsPbBr ₃ Using Novel Planar Ligands Based on the Trivalent Nitrate Coordination Complex. Journal of Physical Chemistry Letters, 2019, 10, 4409-4416.	2.1	23
64	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry C, 2019, 123, 17063-17074.	1.5	1
65	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry Letters, 2019, 10, 4051-4062.	2.1	2
66	Ligand Dependent Growth and Optical Properties of Hybrid Organo-metal Halide Perovskite Magic Sized Clusters. Journal of Physical Chemistry C, 2019, 123, 18746-18752.	1.5	28
67	Size and temperature dependence of photoluminescence of hybrid perovskite nanocrystals. Journal of Chemical Physics, 2019, 151, 154705.	1.2	24
68	Linear Dichroism and Nondestructive Crystalline Identification of Anisotropic Semimetal Few‣ayer MoTe ₂ . Small, 2019, 15, e1903159.	5. 2	24
69	B-Site doped lead halide perovskites: synthesis, band engineering, photophysics, and light emission applications. Journal of Materials Chemistry C, 2019, 7, 2781-2808.	2.7	124
70	Synergistic Surface Passivation of CH ₃ NH ₃ PbBr ₃ Perovskite Quantum Dots with Phosphonic Acid and (3â€Aminopropyl)triethoxysilane. Chemistry - A European Journal, 2019, 25, 5014-5021.	1.7	43
71	Size Dependence of Charge Carrier Dynamics in Organometal Halide Perovskite Nanocrystals: Deciphering Radiative Versus Nonradiative Components. Journal of Physical Chemistry C, 2019, 123, 4610-4619.	1.5	29
72	Optimizing oxygen functional groups in graphene quantum dots for improved antioxidant mechanism. Physical Chemistry Chemical Physics, 2019, 21, 1336-1343.	1.3	70

#	Article	IF	Citations
73	Reasonably retard O2 consumption through a photoactivity conversion nanocomposite for oxygenated photodynamic therapy. Biomaterials, 2019, 218, 119312.	5.7	24
74	Enhanced visible-light-driven photocatalytic hydrogen generation using NiCo2S4/CdS nanocomposites. Chemical Engineering Journal, 2019, 378, 122089.	6.6	59
75	Incorporating iron in nickel cobalt layered double hydroxide nanosheet arrays as efficient oxygen evolution electrocatalyst. Electrochimica Acta, 2019, 317, 684-693.	2.6	36
76	Yolk-shell nanostructures as an emerging photocatalyst paradigm for solar hydrogen generation. Nano Energy, 2019, 62, 289-298.	8.2	83
77	Efficient Trap-Mediated Mn ²⁺ Dopant Emission in Two Dimensional Single-Layered Perovskite (CH ₃ CH ₂ NH ₃) ₂ PbBr ₄ . Journal of Physical Chemistry C, 2019, 123, 14239-14245.	1.5	62
78	Ultrasonication-assisted synthesis of CsPbBr ₃ and Cs ₄ PbBr ₆ perovskite nanocrystals and their reversible transformation. Beilstein Journal of Nanotechnology, 2019, 10, 666-676.	1.5	35
79	Fe ₃ O ₄ @ <i>Astragalus</i> Polysaccharide Core–Shell Nanoparticles for Iron Deficiency Anemia Therapy and Magnetic Resonance Imaging in Vivo. ACS Applied Materials & Samp; Interfaces, 2019, 11, 10452-10461.	4.0	35
80	NIR Light-Degradable Antimony Nanoparticle-Based Drug-Delivery Nanosystem for Synergistic Chemo–Photothermal Therapy in Vitro. ACS Applied Materials & Samp; Interfaces, 2019, 11, 48290-48299.	4.0	39
81	Bumpy Hollow Gold Nanospheres for Theranostic Applications: Effect of Surface Morphology on Photothermal Conversion Efficiency. ACS Applied Nano Materials, 2019, 2, 1072-1081.	2.4	34
82	Polar-Solvent-Free Synthesis of Highly Photoluminescent and Stable CsPbBr ₃ Nanocrystals with Controlled Shape and Size by Ultrasonication. Chemistry of Materials, 2019, 31, 365-375.	3.2	67
83	Enhanced Photoelectrochemical and Photocatalytic Properties of CdS Nanowires Decorated with Ni ₃ S ₂ Nanoparticles under Visible Light Irradiation. Journal of the Electrochemical Society, 2019, 166, H3146-H3153.	1.3	15
84	(Invited) A "Cocktail―Approach to Effective Passivation of Metal Halide Perovskite Magic Sized Clusters and Quantum Dots Using Novel Planar Molecular Ligands Based on Trivalent Metal Nitrate Coordination Complex. ECS Meeting Abstracts, 2019, , .	0.0	0
85	Enhanced Photoluminescence and Stability of CH 3 NH 3 PbBr 3 Perovskite Nanocrystals with Protonated Melamine. ChemNanoMat, 2018, 4, 409-416.	1.5	6
86	Highly Stable Hybrid Perovskite Solar Cells Modified with Polyethylenimine via Ionic Bonding. ChemNanoMat, 2018, 4, 649-655.	1.5	25
87	Highly stable and efficient hybrid perovskite solar cells improved with conductive polyanilines. Materials Research Bulletin, 2018, 106, 35-39.	2.7	31
88	Tuning the emission spectrum of highly stable cesium lead halide perovskite nanocrystals through poly(lactic acid)-assisted anion-exchange reactions. Journal of Materials Chemistry C, 2018, 6, 5375-5383.	2.7	62
89	Steric shielding protected and acidity-activated pop-up of ligand for tumor enhanced photodynamic therapy. Journal of Controlled Release, 2018, 279, 198-207.	4.8	12
90	Highly Tunable Hollow Gold Nanospheres: Gaining Size Control and Uniform Galvanic Exchange of Sacrificial Cobalt Boride Scaffolds. ACS Applied Materials & Sacrificial Cobalt Boride Scaffolds.	4.0	17

#	Article	IF	CITATIONS
91	Visible light driven hydrogen evolution by photocatalytic reforming of lignin and lactic acid using one-dimensional NiS/CdS nanostructures. Applied Catalysis B: Environmental, 2018, 227, 229-239.	10.8	135
92	Improved Stability of Organometal Halide Perovskite Films and Solar Cells toward Humidity via Surface Passivation with Oleic Acid. ACS Applied Energy Materials, 2018, 1, 387-392.	2.5	66
93	Fe ₃ O ₄ @SiO ₂ Nanoparticles Functionalized with Gold and Poly(vinylpyrrolidone) for Bio-Separation and Sensing Applications. ACS Applied Nano Materials, 2018, 1, 1406-1412.	2.4	40
94	Complex Oxides Based on Silver, Bismuth, and Tungsten: Syntheses, Characterization, and Photoelectrochemical Behavior. Journal of Physical Chemistry C, 2018, 122, 13473-13480.	1.5	11
95	Novel Pd–Co Electrocatalyst Supported on Carbon Fibers with Enhanced Electrocatalytic Activity for Coal Electrolysis To Produce Hydrogen. ACS Applied Energy Materials, 2018, 1, 267-272.	2.5	29
96	Enhanced photoelectrochemical and photocatalytic activities of CdS nanowires by surface modification with MoS2 nanosheets. Science China Materials, 2018, 61, 839-850.	3.5	44
97	Molecular Adsorption Mechanism of Elemental Carbon Particles on Leaf Surface. Environmental Science &	4.6	10
98	Enhanced and Facet-specific Electrocatalytic Properties of Ag/Bi ₂ Fe ₄ O ₉ Composite Nanoparticles. ACS Applied Materials & Amp; Interfaces, 2018, 10, 12698-12707.	4.0	14
99	High Br [–] Content CsPb(Cl _{<i>y</i>} Br _{1–<i>y</i>}) ₃ Perovskite Nanocrystals with Strong Mn ²⁺ Emission through Diverse Cation/Anion Exchange Engineering. ACS Applied Materials & Diterfaces, 2018, 10, 11739-11746.	4.0	92
100	Effect of temperature on light induced degradation in methylammonium lead iodide perovskite thin films and solar cells. Solar Energy Materials and Solar Cells, 2018, 174, 566-571.	3.0	97
101	Two-Photon Photoluminescence and Photothermal Properties of Hollow Gold Nanospheres for Efficient Theranostic Applications. Journal of Physical Chemistry C, 2018, 122, 13304-13313.	1.5	14
102	Improving Charge Carrier Delocalization in Perovskite Quantum Dots by Surface Passivation with Conductive Aromatic Ligands. ACS Energy Letters, 2018, 3, 2931-2939.	8.8	116
103	Highly Photoluminescent and Stable N-Doped Carbon Dots as Nanoprobes for Hg2+ Detection. Nanomaterials, 2018, 8, 900.	1.9	50
104	Enhancing Solarâ€Driven Water Splitting with Surfaceâ€Engineered Nanostructures. Solar Rrl, 2018, 3, 1800285.	3.1	5
105	Spin-optotronic Properties of Organometal Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 6103-6111.	2.1	22
106	Design of Gold Hollow Nanorods with Controllable Aspect Ratio for Multimodal Imaging and Combined Chemo-Photothermal Therapy in the Second Near-Infrared Window. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 36703-36710.	4.0	74
107	Hybrid organic–inorganic lead bromide perovskite supercrystals self-assembled with <scp>l</scp> -cysteine and their good luminescence properties. Journal of Materials Chemistry C, 2018, 6, 10994-11001.	2.7	33
108	Detection of Saturated Fatty Acids Associated with a Self-Healing Synthetic Biological Membrane Using Fiber-Enhanced Surface Enhanced Raman Scattering. Journal of Physical Chemistry B, 2018, 122, 8396-8403.	1.2	6

#	Article	IF	Citations
109	Dependence of Interfacial Charge Transfer on Bifunctional Aromatic Molecular Linkers in CdSe Quantum Dot Sensitized TiO2 Photoelectrodes. ACS Applied Energy Materials, 2018, 1, 2907-2917.	2.5	14
110	Synthesis, properties, and optoelectronic applications of two-dimensional MoS ₂ and MoS ₂ -based heterostructures. Chemical Society Reviews, 2018, 47, 6101-6127.	18.7	293
111	Tumor-triggered transformation of chimeric peptide for dual-stage-amplified magnetic resonance imaging and precise photodynamic therapy. Biomaterials, 2018, 182, 269-278.	5.7	45
112	Controlled Synthesis of Fe ₃ O ₄ Nanospheres Coated with Nitrogen-Doped Carbon for High Performance Supercapacitors. ACS Applied Energy Materials, 2018, 1, 4599-4605.	2.5	21
113	Photophysical Properties and Improved Stability of Organic–Inorganic Perovskite by Surface Passivation. Journal of Physical Chemistry C, 2018, 122, 15799-15818.	1.5	70
114	(Invited) Enhanced Photoelectrochemical and Photocatalytic Activities of CdS Nanowires By Surface Modification with Transition Metal Chalcogenides. ECS Meeting Abstracts, 2018, , .	0.0	0
115	Peptideâ€Passivated Lead Halide Perovskite Nanocrystals Based on Synergistic Effect between Amino and Carboxylic Functional Groups. Advanced Functional Materials, 2017, 27, 1604018.	7.8	105
116	Lead Halide Perovskite Nanocrystals: Stability, Surface Passivation, and Structural Control. ChemNanoMat, 2017, 3, 456-465.	1.5	42
117	Tumor-Triggered Geometrical Shape Switch of Chimeric Peptide for Enhanced <i>in Vivo</i> Internalization and Photodynamic Therapy. ACS Nano, 2017, 11, 3178-3188.	7.3	109
118	Size‶unable Synthesis of Hollow Gold Nanospheres through Control of Reaction Temperature. Particle and Particle Systems Characterization, 2017, 34, 1600255.	1.2	12
119	Stabilization of the Cubic Crystalline Phase in Organometal Halide Perovskite Quantum Dots via Surface Energy Manipulation. Journal of Physical Chemistry Letters, 2017, 8, 5378-5384.	2.1	27
120	What Does "Important New Physical Insight―Mean? Answers for the Community of 2D Materials Experimental Researchers. Journal of Physical Chemistry C, 2017, 121, 14993-14993.	1.5	0
121	pHâ€Responsive Nanoscale Coordination Polymer for Efficient Drug Delivery and Realâ€Time Release Monitoring. Advanced Healthcare Materials, 2017, 6, 1700470.	3.9	36
122	Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency. Applied Catalysis B: Environmental, 2017, 219, 611-618.	10.8	375
123	A two layer electrode structure for improved Li Ion diffusion and volumetric capacity in Li Ion batteries. Nano Energy, 2017, 31, 377-385.	8.2	60
124	Organolead Halide Perovskite Nanocrystals: Branched Capping Ligands Control Crystal Size and Stability. Angewandte Chemie - International Edition, 2016, 55, 8864-8868.	7.2	282
125	Organolead Halide Perovskite Nanocrystals: Branched Capping Ligands Control Crystal Size and Stability. Angewandte Chemie, 2016, 128, 9010-9014.	1.6	51
126	Mechanisms for light induced degradation in MAPbI3 perovskite thin films and solar cells. Applied Physics Letters, 2016, 109, .	1.5	198

#	Article	IF	CITATIONS
127	Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics. Energy and Environmental Science, 2016, 9, 2744-2775.	15.6	450
128	Efficient perovskite solar cells by metal ion doping. Energy and Environmental Science, 2016, 9, 2892-2901.	15.6	372
129	Enhancement of the photocatalytic activity of a TiO ₂ /carbon aerogel based on a hydrophilic secondary pore structure. RSC Advances, 2016, 6, 68416-68423.	1.7	23
130	Chemical Nature of Redox-Controlled Photoluminescence of Graphene Quantum Dots by Post-Synthesis Treatment. Journal of Physical Chemistry C, 2016, 120, 26004-26011.	1.5	32
131	Towards understanding the unusual photoluminescence intensity variation of ultrasmall colloidal PbS quantum dots with the formation of a thin CdS shell. Physical Chemistry Chemical Physics, 2016, 18, 31828-31835.	1.3	11
132	Understanding and Mitigating the Effects of Stable Dodecahydro- <i>closo</i> closo	1.5	27
133	Acidityâ€Triggered Tumorâ€Targeted Chimeric Peptide for Enhanced Intraâ€Nuclear Photodynamic Therapy. Advanced Functional Materials, 2016, 26, 4351-4361.	7.8	122
134	An electrochemical method to enhance the performance of metal oxides for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2016, 4, 2849-2855.	5.2	114
135	Uniform carbon-coated CdS core–shell nanostructures: synthesis, ultrafast charge carrier dynamics, and photoelectrochemical water splitting. Journal of Materials Chemistry A, 2016, 4, 1078-1086.	5.2	75
136	Unique optical properties and applications of hollow gold nanospheres (HGNs). Coordination Chemistry Reviews, 2016, 320-321, 18-37.	9.5	42
137	Spectroelectrochemical Photoluminescence of Trap States in H-Treated Rutile TiO ₂ Nanowires: Implications for Photooxidation of Water. Journal of Physical Chemistry C, 2016, 120, 3530-3541.	1.5	32
138	Controllable Cobalt Oxide/Au Hierarchically Nanostructured Electrode for Nonenzymatic Glucose Sensing. Analytical Chemistry, 2016, 88, 1617-1624.	3.2	116
139	Nile Red Derivative-Modified Nanostructure for Upconversion Luminescence Sensing and Intracellular Detection of Fe ³⁺ and MR Imaging. ACS Applied Materials & Therfaces, 2016, 8, 400-410.	4.0	116
140	Hollow Gold Nanospheres. , 2016, , 1482-1493.		0
141	(Invited) Charge Carrier Dynamics and Origin of Instability of Organo-Metal Perovskite Films and Quantum Dots. ECS Meeting Abstracts, 2016, , .	0.0	0
142	A Novel Technique for Visualizing the Intralymphatic Primo Vascular System by Using Hollow Gold Nanospheres. JAMS Journal of Acupuncture and Meridian Studies, 2015, 8, 294-300.	0.3	8
143	From MONEX to the global monsoon: A review of monsoon system research. Advances in Atmospheric Sciences, 2015, 32, 10-31.	1.9	56
144	Some interesting properties of black hydrogen-treated TiO2 nanowires and their potential application in solar energy conversion. Science China Chemistry, 2015, 58, 1810-1815.	4.2	10

#	Article	IF	CITATIONS
145	Ultrafast Exciton Dynamics in InGaN/GaN and Rh/Cr ₂ O ₃ Nanoparticle-Decorated InGaN/GaN Nanowires. Journal of Physical Chemistry Letters, 2015, 6, 2649-2656.	2.1	40
146	Tunable Photoluminescent Core/Shell Cu ⁺ -Doped ZnSe/ZnS Quantum Dots Codoped with Al ³⁺ , Ga ³⁺ , or In ³⁺ . ACS Applied Materials & Dots (Interfaces), 2015, 7, 10055-10066.	4.0	49
147	Simultaneous detection of electronic structure changes from two elements of a bifunctional catalyst using wavelength-dispersive X-ray emission spectroscopy and in situ electrochemistry. Physical Chemistry Chemical Physics, 2015, 17, 8901-8912.	1.3	45
148	Shell-thickness dependent electron transfer and relaxation in type-II core–shell CdS/TiO ₂ structures with optimized photoelectrochemical performance. Journal of Materials Chemistry A, 2015, 3, 22627-22635.	5 . 2	87
149	Synthesis, Optical Properties, and Exciton Dynamics of Organolead Bromide Perovskite Nanocrystals. Journal of Physical Chemistry C, 2015, 119, 26672-26682.	1.5	96
150	Glucose detection using SERS with multi-branched gold nanostructures in aqueous medium. RSC Advances, 2014, 4, 59233-59241.	1.7	27
151	Key Factors Affecting the Reproducibility of Synthesis and Growth Mechanism of Near-Infrared Absorbing Hollow Gold Nanospheres. Chemistry of Materials, 2014, 26, 6805-6810.	3.2	34
152	Preparation of amphiphilic copolymers for covalent loading of paclitaxel for drug delivery system. Journal of Polymer Science Part A, 2014, 52, 366-374.	2.5	21
153	Rational Codoping as a Strategy to Improve Optical Properties of Doped Semiconductor Quantum Dots. Journal of Physical Chemistry Letters, 2014, 5, 3694-3700.	2.1	21
154	Visible and near-infrared luminescent mesoporous titania microspheres functionalized with lanthanide complexes: microstructure and luminescence with visible excitation. RSC Advances, 2014, 4, 28481.	1.7	26
155	The excited state dynamics of protein-encapsulated Au nanoclusters. Chemical Physics Letters, 2014, 610-611, 125-130.	1.2	10
156	Surface Passivation of TiO ₂ Nanowires Using a Facile Precursor-Treatment Approach for Photoelectrochemical Water Oxidation. Journal of Physical Chemistry C, 2014, 118, 15086-15094.	1.5	80
157	Dependence of catalytic properties of Al/Fe2O3 thermites on morphology of Fe2O3 particles in combustion reactions. Journal of Solid State Chemistry, 2014, 219, 67-73.	1.4	59
158	Atomic-Scale Perspective of Ultrafast Charge Transfer at a Dye–Semiconductor Interface. Journal of Physical Chemistry Letters, 2014, 5, 2753-2759.	2.1	79
159	Basics and practice of surface enhanced Raman scattering (SERS) and tip enhanced Raman scattering (TERS). Biomedical Spectroscopy and Imaging, 2014, 3, 121-159.	1.2	5
160	Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays. Nanoscale, 2013, 5, 9867.	2.8	106
161	The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Scientific Reports, 2013, 3, 2248.	1.6	432
162	Au Nanostructure-Decorated TiO ₂ Nanowires Exhibiting Photoactivity Across Entire UV-visible Region for Photoelectrochemical Water Splitting. Nano Letters, 2013, 13, 3817-3823.	4. 5	812

#	Article	IF	Citations
163	Reduction-responsive drug delivery based on mesoporous silica nanoparticle core with crosslinked poly(acrylic acid) shell. Materials Science and Engineering C, 2013, 33, 3426-3431.	3.8	38
164	Exciton Dynamics of CdS Thin Films Produced by Chemical Bath Deposition and DC Pulse Sputtering. ACS Applied Materials & Samp; Interfaces, 2013, 5, 7544-7551.	4.0	22
165	Effect of Al ³⁺ Co-doping on the Dopant Local Structure, Optical Properties, and Exciton Dynamics in Cu ⁺ -Doped ZnSe Nanocrystals. ACS Nano, 2013, 7, 8680-8692.	7.3	55
166	Chemically modified titanium oxide nanostructures for dye-sensitized solar cells. Nano Energy, 2013, 2, 1373-1382.	8.2	21
167	Probing the Nature of Bandgap States in Hydrogen-Treated TiO ₂ Nanowires. Journal of Physical Chemistry C, 2013, 117, 26821-26830.	1.5	54
168	Experimental and TD-DFT Study of Optical Absorption of Six Explosive Molecules: RDX, HMX, PETN, TNT, TATP, and HMTD. Journal of Physical Chemistry A, 2013, 117, 6043-6051.	1.1	52
169	Computational and Photoelectrochemical Study of Hydrogenated Bismuth Vanadate. Journal of Physical Chemistry C, 2013, 117, 10957-10964.	1.5	222
170	Optical Properties and Exciton Dynamics of Alloyed Core/Shell/Shell Cd _{1â€"<i>x</i>} Zn _{<i>x</i>} Se/ZnSe/ZnS Quantum Dots. ACS Applied Materials & Interfaces, 2013, 5, 2893-2900.	4.0	82
171	Exciton Dynamics in Semiconductor Nanocrystals. Advanced Materials, 2013, 25, 2878-2896.	11.1	178
172	Mechanistic Study of the Covalent Loading of Paclitaxel via Disulfide Linkers for Controlled Drug Release. Langmuir, 2013, 29, 734-743.	1.6	50
173	NIR Fluorophore-Hollow Gold Nanosphere Complex for Cancer Enzyme-Triggered Detection and Hyperthermia. Advances in Experimental Medicine and Biology, 2013, 765, 323-328.	0.8	9
174	Ultrafast Transient Absorption Studies of Hematite Nanoparticles: The Effect of Particle Shape on Exciton Dynamics. ChemSusChem, 2013, 6, 1907-1914.	3.6	26
175	Physical and photoelectrochemical characterization of Ti-doped hematite photoanodes prepared by solution growth. Journal of Materials Chemistry A, 2013, 1, 14498.	5.2	83
176	Metal and Magnetic Nanostructures for Cancer Diagnosis and Therapy. Reviews in Nanoscience and Nanotechnology, 2013, 2, 29-41.	0.4	2
177	Ultrafast Charge Carrier Dynamics and Photoelectrochemical Properties of Hydrogen-treated TiO2 Nanowire Arrays. Materials Research Society Symposia Proceedings, 2012, 1387, 1.	0.1	5
178	Synthesis and Structural, Optical, and Dynamic Properties of Core/Shell/Shell CdSe/ZnSe/ZnS Quantum Dots. Journal of Physical Chemistry C, 2012, 116, 25065-25073.	1.5	80
179	Effects of Hydrogen Treatment and Air Annealing on Ultrafast Charge Carrier Dynamics in ZnO Nanowires Under in Situ Photoelectrochemical Conditions. Journal of Physical Chemistry C, 2012, 116, 17360-17368.	1.5	68
180	Preparation of Copolymer Paclitaxel Covalently Linked via a Disulfide Bond and Its Application on Controlled Drug Delivery. Journal of Physical Chemistry B, 2012, 116, 9231-9237.	1.2	34

#	Article	IF	Citations
181	Optical properties and coherent vibrational oscillations of gold nanostars. Chemical Physics Letters, 2012, 543, 127-132.	1.2	16
182	Nanostructured homogenous CdSe–TiO2 composite visible light photoanodes fabricated by oblique angle codeposition. Journal of Materials Chemistry, 2012, 22, 14205.	6.7	26
183	Photoelectrochemical study of oxygen deficient TiO2 nanowire arrays with CdS quantum dot sensitization. Nanoscale, 2012, 4, 1463.	2.8	110
184	Hot-Wall Thermal Chemical Vapor Deposition. , 2012, , 1042-1042.		0
185	Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy and Environmental Science, 2012, 5, 6180.	15.6	666
186	Ultrafast Charge Transfer Dynamics in Polycrystalline CdSe/TiO ₂ Nanorods Prepared by Oblique Angle Codeposition. Journal of Physical Chemistry C, 2012, 116, 5033-5041.	1.5	39
187	Synthesis, characterization and surface enhanced Raman scattering of hollow gold–silica double shell nanostructures. Biomedical Spectroscopy and Imaging, 2012, 1, 275-291.	1.2	5
188	Thermoresponsive graphene oxideâ€PNIPAM nanocomposites with controllable grafting polymer chains via moderate <i>in situ</i> SET–LRP. Journal of Polymer Science Part A, 2012, 50, 4451-4458.	2.5	75
189	Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy and Environmental Science, 2012, 5, 6682.	15.6	492
190	Ligand-Mediated Modification of the Electronic Structure of CdSe Quantum Dots. Nano Letters, 2012, 12, 2763-2767.	4.5	33
191	The Influence of Oxygen Content on the Thermal Activation of Hematite Nanowires. Angewandte Chemie - International Edition, 2012, 51, 4074-4079.	7.2	349
192	Ultrafast Exciton Dynamics in Silicon Nanowires. Journal of Physical Chemistry Letters, 2012, 3, 766-771.	2.1	17
193	Optical Properties and Applications of Shape-Controlled Metal Nanostructures. International Journal of Behavioral and Consultation Therapy, 2012, , 205-238.	0.4	3
194	Photoelectrochemical and Photocatalytic Properties of TiO ₂ , WO ₃ and WO ₃ -TiO ₂ Porous Films in the Photodegradation of Rhodamine 6G in Aqueous Solution. Science of Advanced Materials, 2012, 4, 673-680.	0.1	16
195	Coherent Vibrational Oscillations of Hollow Gold Nanospheres. Journal of Physical Chemistry Letters, 2011, 2, 228-235.	2.1	55
196	Synthesis, Optical and Structural Properties, and Charge Carrier Dynamics of Cu-Doped ZnSe Nanocrystals. Journal of Physical Chemistry C, 2011, 115, 20864-20875.	1.5	99
197	Challenges and Opportunities in Light and Electrical Energy Conversion. Journal of Physical Chemistry Letters, 2011, 2, 1351-1352.	2.1	5
198	Highly reproducible synthesis of hollow gold nanospheres with near infrared surface plasmon absorption using PVP as stabilizing agent. Journal of Materials Chemistry, 2011, 21, 2344-2350.	6.7	85

#	Article	IF	Citations
199	Quasi-core-shell TiO2/WO3 and WO3/TiO2 nanorod arrays fabricated by glancing angle deposition for solar water splitting. Journal of Materials Chemistry, 2011, 21, 10792.	6.7	127
200	Structural, Optical, and Photocatalytic Properties of Cr:TiO2 Nanorod Array Fabricated by Oblique Angle Codeposition. Journal of Physical Chemistry C, 2011, 115, 16892-16903.	1.5	34
201	Highly Sensitive Detection of Proteins and Bacteria in Aqueous Solution Using Surface-Enhanced Raman Scattering and Optical Fibers. Analytical Chemistry, 2011, 83, 5888-5894.	3.2	155
202	Sn-Doped Hematite Nanostructures for Photoelectrochemical Water Splitting. Nano Letters, 2011, 11, 2119-2125.	4.5	994
203	Photovoltaic Conversion Enhancement of CdSe Quantum Dot-Sensitized TiO2 Decorated with Au Nanoparticles and P3OT. Journal of Physical Chemistry C, 2011, 115, 23209-23220.	1.5	53
204	Hydrogen-Treated TiO ₂ Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Letters, 2011, 11, 3026-3033.	4.5	2,344
205	Raman and Surface-Enhanced Raman Detection of Domoic Acid and Saxitoxin. Applied Spectroscopy, 2011, 65, 159-164.	1.2	16
206	Characterization of Primary Amine Capped CdSe, ZnSe, and ZnS Quantum Dots by FT-IR: Determination of Surface Bonding Interaction and Identification of Selective Desorption. Langmuir, 2011, 27, 8486-8493.	1.6	141
207	Preparation of pH-Responsive Mesoporous Silica Nanoparticles and Their Application in Controlled Drug Delivery. Journal of Physical Chemistry C, 2011, 115, 9926-9932.	1.5	291
208	Photogenerated charge carriers in semiconductor nanomaterials for solar energy conversion. International Journal of Nanoparticles, 2011, 4, 95.	0.1	2
209	Electron Enrichment in 3d Transition Metal Oxide Hetero-Nanostructures. Nano Letters, 2011, 11, 3855-3861.	4.5	74
210	A perspective on solar-driven water splitting with all-oxide hetero-nanostructures. Energy and Environmental Science, 2011, 4, 3889.	15.6	219
211	Probing the local structure of dilute Cu dopants in fluorescent ZnS nanocrystals using EXAFS. Nanoscale, 2011, 3, 4182.	2.8	33
212	Facile Synthesis of Highly Photoactive \hat{l}_{\pm} -Fe ₂ O ₃ -Based Films for Water Oxidation. Nano Letters, 2011, 11, 3503-3509.	4.5	623
213	Synthesis and Characterization of Organically Soluble Cu-Doped ZnS Nanocrystals with Br Co-activator. Journal of Physical Chemistry C, 2011, 115, 14559-14570.	1.5	25
214	CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance. Nano Research, 2011, 4, 249-258.	5.8	87
215	Ultrafast exciton relaxation dynamics of PbS and core/shell PbS/CdS quantum dots. Science China Chemistry, 2011, 54, 2009-2015.	4.2	18
216	Ultrafast charge carrier dynamics and photoelectrochemical properties of ZnO nanowires decorated with Au nanoparticles. , 2011 , , .		1

#	Article	IF	CITATIONS
217	Metal oxide nanomaterials for solar hydrogen generation from photoelectrochemical water splitting. MRS Bulletin, 2011, 36, 48-55.	1.7	113
218	Synergistic Effect of CdSe Quantum Dot Sensitization and Nitrogen Doping of TiO ₂ Nanostructures for Photoelectrochemical Solar Hydrogen Generation. Nano Letters, 2010, 10, 478-483.	4.5	474
219	Double-Sided CdS and CdSe Quantum Dot Co-Sensitized ZnO Nanowire Arrays for Photoelectrochemical Hydrogen Generation. Nano Letters, 2010, 10, 1088-1092.	4.5	587
220	In-situ reversible temperature-dependent surface enhanced Raman scattering study using optical fibers. Chemical Physics Letters, 2010, 495, 109-112.	1.2	5
221	QD co-sensitized and nitrogen doped TiO 2 nanocomposite for photoelectrochemical hydrogen generation. , 2010, , .		0
222	Preparation and Photoelectrochemical Properties of CdSe/TiO ₂ Hybrid Mesoporous Structures. Journal of Physical Chemistry Letters, 2010, 1, 155-160.	2.1	142
223	Biomedical Applications of Shape-Controlled Plasmonic Nanostructures: A Case Study of Hollow Gold Nanospheres for Photothermal Ablation Therapy of Cancer. Journal of Physical Chemistry Letters, 2010, 1, 686-695.	2.1	272
224	Reversibility and Improved Hydrogen Release of Magnesium Borohydride. Journal of Physical Chemistry C, 2010, 114, 5224-5232.	1.5	144
225	Optical Properties and Persistent Spectral Hole Burning of Near Infrared-Absorbing Hollow Gold Nanospheres. Journal of Physical Chemistry C, 2010, 114, 18126-18133.	1.5	34
226	CdSe Quantum Rod Formation Aided By In Situ TOPO Oxidation. Chemistry of Materials, 2010, 22, 2814-2821.	3.2	33
227	Ultrasmall Single-Crystal Indium Antimonide Nanowires. Crystal Growth and Design, 2010, 10, 2479-2482.	1.4	45
228	High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2010, 27, 977.	0.8	67
229	Distance-Dependent Fluorescence Quenching and Binding of CdSe Quantum Dots by Functionalized Nitroxide Radicals. Journal of Physical Chemistry C, 2010, 114, 7793-7805.	1.5	80
230	Temperature-Sensitive Luminescent Nanoparticles and Films Based on a Terbium (III) Complex Probe. Journal of Physical Chemistry C, 2010, 114, 12642-12648.	1.5	106
231	Portable fiber sensors based on surface-enhanced Raman scattering. Review of Scientific Instruments, 2010, 81, 123103.	0.6	25
232	Enhanced Cu emission in ZnS : Cu,Cl/ZnS core–shell nanocrystals. Nanoscale, 2010, 2, 1213.	2.8	40
233	Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting. Advanced Functional Materials, 2009, 19, 1849-1856.	7.8	436
234	Photothermal ablation therapy for cancer based on metal nanostructures. Science in China Series B: Chemistry, 2009, 52, 1559-1575.	0.8	38

#	Article	IF	Citations
235	Photoelectrochemical Water Splitting Using Dense and Aligned TiO ₂ Nanorod Arrays. Small, 2009, 5, 104-111.	5.2	380
236	Optical properties and applications of hybrid semiconductor nanomaterials. Coordination Chemistry Reviews, 2009, 253, 3015-3041.	9.5	243
237	Determination of the Exciton Binding Energy in CdSe Quantum Dots. ACS Nano, 2009, 3, 325-330.	7.3	151
238	Metastability and crystal structure of the bialkali complex metal borohydride NaK(BH4)2. Journal of Alloys and Compounds, 2009, 476, 446-450.	2.8	45
239	Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Letters, 2009, 9, 2331-2336.	4.5	1,071
240	Synthesis, Structural, and Optical Properties of Stable ZnS:Cu,Cl Nanocrystals. Journal of Physical Chemistry A, 2009, 113, 3830-3839.	1.1	159
241	Theoretical Study of Surface Plasmon Resonances in Hollow Goldâ^'Silver Double-Shell Nanostructures. Journal of Physical Chemistry A, 2009, 113, 4068-4074.	1.1	24
242	Targeted Photothermal Ablation of Murine Melanomas with Melanocyte-Stimulating Hormone Analog–Conjugated Hollow Gold Nanospheres. Clinical Cancer Research, 2009, 15, 876-886.	3.2	306
243	Molecular Fiber Sensors Based on Surface Enhanced Raman Scattering (SERS). Journal of Nanoscience and Nanotechnology, 2009, 9, 2234-2246.	0.9	20
244	Plasmonic Optical Properties and Applications of Metal Nanostructures. Plasmonics, 2008, 3, 127-150.	1.8	373
245	Tunable Photocurrent Spectrum in Well-Oriented Zinc Oxide Nanorod Arrays with Enhanced Photocatalytic Activity. Journal of Physical Chemistry C, 2008, 112, 8850-8855.	1.5	104
246	OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR NANOSTRUCTURES. Annual Review of Nano Research, 2008, , 1-61.	0.2	17
247	Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering. Applied Physics Letters, 2008, 93, .	1.5	39
248	Nitrogen-Doped and CdSe Quantum-Dot-Sensitized Nanocrystalline TiO ₂ Films for Solar Energy Conversion Applications. Journal of Physical Chemistry C, 2008, 112, 1282-1292.	1.5	192
249	Novel Optical Properties and Emerging Applications of Metal Nanostructures. Journal of Physical Chemistry C, 2008, 112, 10323-10337.	1.5	279
250	Metal and Magnetic Nanostructures for Cancer Detection, Imaging, and Therapy. Journal of Biomedical Nanotechnology, 2008, 4, 377-399.	0.5	6
251	Excitation-Wavelength Dependence of Fluorescence Intermittency in CdSe Nanorods. ACS Nano, 2008, 2, 2143-2153.	7.3	53
252	<i>In vitro</i> and <i>in vivo</i> targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Molecular Cancer Therapeutics, 2008, 7, 1730-1739.	1.9	392

#	Article	IF	Citations
253	Hollow Goldâ^'Silver Double-Shell Nanospheres:  Structure, Optical Absorption, and Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2008, 112, 6319-6329.	1.5	114
254	Manipulation and light-induced agglomeration of carbon nanotubes through optical trapping of attached silver nanoparticles. Nanotechnology, 2008, 19, 215304.	1.3	6
255	A double substrate "sandwich―structure for fiber surface enhanced Raman scattering detection. Applied Physics Letters, 2008, 92, .	1.5	59
256	Fiber surface enhanced raman scattering (SERS) sensors based on a double substrate "sandwich" structure. , 2008, , .		0
257	Highly Sensitive and Compact Molecular Sensor Using Surface Enhanced Raman Scattering and Optical Fibers., 2007,,.		O
258	Molecular Probe Based on Photonic Crystal Fiber (PCF) and Surface Enhanced Raman Scattering (SERS). , 2007, , .		3
259	Photoluminescence spectroscopy of bioconjugated CdSeâ^•ZnS quantum dots. Applied Physics Letters, 2007, 90, 263112.	1.5	47
260	Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering. Applied Physics Letters, 2007, 90, 193504.	1.5	123
261	Gold Nanotubes Synthesized via Magnetic Alignment of Cobalt Nanoparticles as Templates. Journal of Physical Chemistry C, 2007, 111, 16080-16082.	1.5	42
262	Reduction of HAuCl4by Na2S Revisited:  The Case for Au Nanoparticle Aggregates and Against Au2S/Au Core/Shell Particlesâ€. Journal of Physical Chemistry C, 2007, 111, 8892-8901.	1.5	56
263	On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides. Applied Physics Letters, 2007, 90, 211107.	1.5	80
264	Competitive binding effects on surface-enhanced Raman scattering of peptide molecules. Chemical Physics Letters, 2007, 447, 335-339.	1.2	28
265	Ultrafast electronic dynamics of monodisperse PbS and CdS nanoparticles/nanorods: Effects of size on nonlinear relaxation. Optical Materials, 2007, 29, 858-866.	1.7	16
266	Silica-Coated CdTe Quantum Dots Functionalized with Thiols for Bioconjugation to IgG Proteins. Journal of Physical Chemistry B, 2006, 110, 5779-5789.	1.2	258
267	Synthesis and Characterization of Ultrathin WO3Nanodisks Utilizing Long-Chain Poly(ethylene) Tj ETQq $1\ 1\ 0.784$	1314 rgBT 1.2	/Qyerlock 10
268	Improving Nanoprobes Using Surface-Enhanced Raman Scattering from 30-nm Hollow Gold Particles. Analytical Chemistry, 2006, 78, 4732-4736.	3.2	198
269	Synthesis, Characterization, and Tunable Optical Properties of Hollow Gold Nanospheresâ€. Journal of Physical Chemistry B, 2006, 110, 19935-19944.	1.2	485
270	Growth and Characterization of Highly Branched Nanostructures of Magnetic Nanoparticles. Journal of Physical Chemistry B, 2006, 110, 3135-3139.	1.2	38

#	Article	IF	CITATIONS
271	Light-induced further agglomeration of metal particles. , 2006, , .		2
272	Effects of chromophore orientation and molecule conformation on surface-enhanced Raman scattering studied with alkanoic acids and colloidal silver nanoparticles. Journal of Chemical Physics, 2006, 125, 234706.	1.2	15
273	Optical trapping and light-induced agglomeration of gold nanoparticle aggregates. Physical Review B, 2006, 73, .	1.1	64
274	Photoluminescence Decay Dynamics and Mechanism of Energy Transfer in Undoped and Mn ²⁺ Doped ZnSe Nanoparticles. Journal of Nanoscience and Nanotechnology, 2005, 5, 1492-1497.	0.9	14
275	Surface-enhanced Raman scattering detection of lysophosphatidic acid. Analytical and Bioanalytical Chemistry, 2005, 383, 763-767.	1.9	40
276	Structural correlations with shifts in the extended plasma resonance of gold nanoparticle aggregates. Optical Materials, 2005, 27, 1197-1203.	1.7	23
277	Ultra-sensitive compact fiber sensor based on nanoparticle surface enhanced Raman scattering., 2005,		12
278	Comment on "Gold Nanoshells Improve Single Nanoparticle Molecular Sensors― Nano Letters, 2005, 5, 809-810.	4.5	51
279	Surface-enhanced Raman scattering sensor based on D-shaped fiber. Applied Physics Letters, 2005, 87, 123105.	1.5	89
280	Unique Gold Nanoparticle Aggregates as a Highly Active Surface-Enhanced Raman Scattering Substrate. Journal of Physical Chemistry B, 2004, 108, 19191-19197.	1.2	308
281	Optical Properties and Potential Applications of Doped Semiconductor Nanoparticles. Journal of Nanoscience and Nanotechnology, 2004, 4, 919-947.	0.9	142
282	Ultrafast study of electronic relaxation dynamics in Au11 nanoclusters. Chemical Physics Letters, 2004, 383, 31-34.	1.2	43
283	Generalized and Facile Synthesis of Semiconducting Metal Sulfide Nanocrystals. Journal of the American Chemical Society, 2003, 125, 11100-11105.	6.6	619
284	Generalized and Facile Synthesis of Semiconducting Metal Sulfide Nanocrystals ChemInform, 2003, 34, no.	0.1	0
285	Photoisomerization of a benzopyrromethenone derivative in micelles and organic solvents. Chemical Physics Letters, 2003, 371, 510-515.	1.2	1
286	Effect of Micelles on Oxygen-Quenching Processes of Triplet-State Para-Substituted Tetraphenylporphyrin Photosensitizers. Journal of Physical Chemistry A, 2003, 107, 2763-2767.	1.1	29
287	Photophysical behaviour of an opp-dibenzoporphyrin (2, 12-diethyl-3,13-dimethyldibenzo[g,q]porphyrin) in micelles and organic solvents. Photochemical and Photobiological Sciences, 2003, 2, 934.	1.6	15
288	Unusual excitation intensity dependence of fluorescence of CdTe nanoparticles. Journal of Chemical Physics, 2003, 118, 12-16.	1.2	58

#	Article	IF	Citations
289	Electronic Conductivity of Semiconductor Nanoparticle Monolayers at the Air Water Interface. Journal of Physical Chemistry B, 2003, 107, 5733-5739.	1.2	36
290	Optical and electrochemical characterization of poly(3-undecyl-2, $2\hat{a}\in^2$ -bithiophene) in thin film solid state TiO2 photovoltaic solar cells. Synthetic Metals, 2003, 132, 197-204.	2.1	64
291	Multigram Scale Synthesis and Characterization of Monodisperse Tetragonal Zirconia Nanocrystals. Journal of the American Chemical Society, 2003, 125, 6553-6557.	6.6	373
292	Optical and Surface Structural Properties of Mn2+-Doped ZnSe Nanoparticles. Journal of Physical Chemistry B, 2003, 107, 6309-6317.	1.2	99
293	Ultrafast Electronic Relaxation and Coherent Vibrational Oscillation of Strongly Coupled Gold Nanoparticle Aggregates. Journal of the American Chemical Society, 2003, 125, 549-553.	6.6	103
294	Ultrafast electronic relaxation in colloidal gold (I) sulfide nanoparticles., 2002, 4807, 216.		1
295	Near Infrared Optical Absorption of Gold Nanoparticle Aggregates. Journal of Physical Chemistry B, 2002, 106, 7005-7012.	1.2	255
296	Up-conversion luminescence of Mn2+inZnS: Mn2+nanoparticles. Physical Review B, 2001, 64, .	1.1	70
297	Temperature Dependence of Up-Conversion Luminescence and Photoluminescence of Mn ²⁺ in ZnS:Mn ²⁺ Nanoparticles. Journal of Nanoscience and Nanotechnology, 2001, 1, 295-301.	0.9	26
298	Investigation of Electron Delocalization and Ultrafast Studies of Rull/OslIDyads with Ethynyl/Butadiynyl-Bridged Polyphosphines. Journal of Physical Chemistry A, 2001, 105, 7979-7988.	1.1	14
299	Synthesis and characterization of Cu \times S nanoparticles. Nature of the infrared band and charge-carrier dynamics. Pure and Applied Chemistry, 2000, 72, 101-117.	0.9	102
300	Synthesis, Optical Spectroscopy and Ultrafast Electron Dynamics of PbS Nanoparticles with Different Surface Capping. Journal of Physical Chemistry B, 2000, 104, 11598-11605.	1.2	158
301	Luminescence decay kinetics ofMn2+-doped ZnS nanoclusters grown in reverse micelles. Physical Review B, 2000, 62, 2021-2028.	1.1	90
302	Interfacial Charge Carrier Dynamics of Colloidal Semiconductor Nanoparticles. Journal of Physical Chemistry B, 2000, 104, 7239-7253.	1.2	321
303	Ultrafast Electronic Relaxation Dynamics in Layered Iodide Semiconductors:Â A Comparative Study of Colloidal Bil3and Pbl2Nanoparticles. Journal of Physical Chemistry B, 2000, 104, 9396-9403.	1.2	35
304	Time-Resolved Studies of the Excited-State Dynamics of meso-Tetra(hydroxylphenyl)chlorin in Solution. Photochemistry and Photobiology, 1999, 69, 617-623.	1.3	16
305	Ultrafast Electronic Relaxation Dynamics in Pbl2Semiconductor Colloidal Nanoparticles:Â A Femtosecond Transient Absorption Study. Journal of Physical Chemistry B, 1999, 103, 3128-3137.	1.2	72
306	Synthesis and Ultrafast Study of Cysteine- and Glutathione-Capped Ag2S Semiconductor Colloidal Nanoparticles. Journal of Physical Chemistry A, 1999, 103, 10194-10201.	1.1	143

#	Article	IF	Citations
307	Femtosecond Studies of Electronic Relaxation, Vibrational Relaxation, and Rotational Diffusion in all-trans-1,8-Diphenyl-1,3,5,7-octatetraene. Journal of Physical Chemistry A, 1999, 103, 2388-2393.	1.1	12
308	Time-resolved studies of the excited-state dynamics of meso-tetra(hydroxylphenyl)chlorin in solution. Photochemistry and Photobiology, 1999, 69, 617-23.	1.3	3
309	The Effect of Biological Substrates on the Ultrafast Excitedâ€state Dynamics of Zinc Phthalocyanine Tetrasulfonate in Solution. Photochemistry and Photobiology, 1998, 67, 90-96.	1.3	38
310	Ultrafast Studies of Photoexcited Electron Dynamics in \hat{I}^3 - and \hat{I}_\pm -Fe2O3 Semiconductor Nanoparticles. Journal of Physical Chemistry B, 1998, 102, 770-776.	1.2	492
311	Nature of the power-dependent ultrafast relaxation process of photoexcited charge carriers in II-VI semiconductor quantum dots: Effects of particle size, surface, and electronic structure. Journal of Chemical Physics, 1998, 108, 2143-2151.	1.2	104
312	Femtosecond study of photo-induced electron dynamics in AgI and core/shell structured AgI/Ag2S and AgBr/Ag2S colloidal nanoparticles. Journal of Chemical Physics, 1998, 108, 3119-3126.	1.2	67
313	The Effect of Biological Substrates on the Ultrafast Excited-state Dynamics of Zinc Phthalocyanine Tetrasulfonate in Solution. Photochemistry and Photobiology, 1998, 67, 90.	1.3	2
314	The effect of biological substrates on the ultrafast excited-state dynamics of zinc phthalocyanine tetrasulfonate in solution. Photochemistry and Photobiology, 1998, 67, 90-6.	1.3	2
315	Femtosecond studies of exciton dynamics in a novel main chain chiral conjugated poly(arylenevinylene). Journal of Chemical Physics, 1997, 106, 3710-3720.	1.2	19
316	Ultrafast Studies of Excited-State Dynamics of Phthalocyanine and Zinc Phthalocyanine Tetrasulfonate in Solution. Journal of Physical Chemistry A, 1997, 101, 3207-3213.	1.1	173
317	Ultrafast Electron Injection:Â Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized TiO2Nanocrystalline Electrode. Journal of Physical Chemistry B, 1997, 101, 9342-9351.	1.2	567
318	Ultrafast Studies of Electron Dynamics in Semiconductor and Metal Colloidal Nanoparticles:  Effects of Size and Surface. Accounts of Chemical Research, 1997, 30, 423-429.	7.6	333
319	Preparation and ultrafast optical characterization of metal and semiconductor colloidal nano-particles. Journal of Sol-Gel Science and Technology, 1997, 9, 125-137.	1.1	18
320	Direct probe of size-dependent electronic relaxation in single-sized Au and nearly monodisperse Pt colloidal nano-particles. Chemical Physics Letters, 1997, 270, 139-144.	1.2	128
321	Femtosecond transient absorption studies of diphenylpolyenes. Direct detection of S2 â†' S1 radiationless conversion in diphenylhexatriene and diphenyloctatetraene. Chemical Physics Letters, 1997, 276, 430-434.	1.2	25
322	Femtosecond Electronic Relaxation Dynamics in Metal Nano-Particles: Effects of Surface and Size Confinement. Molecular Crystals and Liquid Crystals, 1996, 283, 25-30.	0.3	36
323	Ultrafast electron dynamics at the liquid–metal interface: Femtosecond studies using surface plasmons in aqueous silver colloid. Journal of Chemical Physics, 1995, 102, 3860-3866.	1.2	132
324	Femtosecond studies of interfacial electronâ€hole recombination in aqueous CdS colloids. Applied Physics Letters, 1994, 64, 1989-1991.	1.5	31

#	Article	IF	CITATIONS
325	FEMTOSECOND STUDIES OF HEMATOPORPHYRIN DERIVATIVE IN SOLUTION: EFFECT OF pH AND SOLVENT ON THE EXCITED STATE DYNAMICS. Photochemistry and Photobiology, 1994, 60, 301-309.	1.3	12
326	Femtosecond studies of interparticle electron transfer in a coupled CdS–TiO2 colloidal system. Journal of Chemical Physics, 1994, 101, 6222-6225.	1.2	102
327	Direct femtosecond measurements of single collision dominated geminate recombination times of small molecules in liquids. Chemical Physics Letters, 1993, 203, 503-508.	1.2	123
328	Vibrational relaxation of M(CO)6 (M=Cr, Mo, W): Effect of metal mass on vibrational cooling dynamics and nonâ€Boltzmann internal energy distributions. Journal of Chemical Physics, 1993, 99, 7595-7601.	1.2	51
329	Ultrafast studies of photochromic spiropyrans in solution. Journal of the American Chemical Society, 1992, 114, 10921-10927.	6.6	136
330	Photodissociation dynamics of Mn2(CO)10 in solution on ultrafast time scales. Journal of Chemical Physics, 1991, 95, 4024-4032.	1,2	51
331	CÌfâ†'AÌf emission in H2O following twoâ€photon excitation: Dissociation dynamics in the AÌf state for different initial states. Journal of Chemical Physics, 1991, 95, 6536-6543.	1.2	10
332	Resonance emission studies of the photodissociating water molecule. Chemical Physics, 1990, 141, 393-400.	0.9	31
333	Spectroscopy and photodissociation dynamics of H2O: Timeâ€dependent view. Journal of Chemical Physics, 1989, 90, 1666-1676.	1.2	59
334	Dynamics and selective bond breaking in photodissociation. Chemical Physics, 1989, 139, 89-121.	0.9	93
335	OH/OD bond breaking selectivity in hod photodissociation. Chemical Physics Letters, 1988, 149, 233-238.	1.2	54
336	The first absorption band for H2O: Interpretation of the absorption spectrum using time dependent pictures. Journal of Chemical Physics, 1988, 89, 5607-5613.	1.2	80
337	CH2I2 photodissociation: Emission spectrum at 355 nm. Journal of Chemical Physics, 1988, 89, 309-313.	1.2	72
338	CH2I2 photodissociation: Dynamical modeling. Journal of Chemical Physics, 1988, 89, 3602-3611.	1.2	72
339	Multidimensional Nanostructures for Solar Water Splitting: Synthesis, Properties, and Applications. , 0, , 459-505.		0
340	Nanoparticles: Charge Carrier Dynamics. , 0, , 3165-3178.		0