
Mingzhen Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8826318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel MAPK/AKT-impairing germline NRAS variant identified in a melanoma-prone family. Familial Cancer, 2022, 21, 347-355.	1.9	1
2	Mechanism of activation and the rewired network: New drug design concepts. Medicinal Research Reviews, 2022, 42, 770-799.	10.5	15
3	Conformational-specific self-assembled peptides as dual-mode, multi-target inhibitors and detectors for different amyloid proteins. Journal of Materials Chemistry B, 2022, 10, 1754-1762.	5.8	6
4	Allostery: Allosteric Cancer Drivers and Innovative Allosteric Drugs. Journal of Molecular Biology, 2022, 434, 167569.	4.2	26
5	The mechanism of activation of MEK1 by B-Raf and KSR1. Cellular and Molecular Life Sciences, 2022, 79, 281.	5.4	7
6	The structural basis of BCR-ABL recruitment of GRB2 in chronic myelogenous leukemia. Biophysical Journal, 2022, 121, 2251-2265.	0.5	9
7	PI3K Driver Mutations: A Biophysical Membrane-Centric Perspective. Cancer Research, 2021, 81, 237-247.	0.9	26
8	Augment Reality-Based Teaching Practice. Biomedical Engineering Education, 2021, 1, 237-241.	0.7	3
9	Phosphorylation and Driver Mutations in PI3Kl \pm and PTEN Autoinhibition. Molecular Cancer Research, 2021, 19, 543-548.	3.4	23
10	The mechanism of activation of monomeric B-Raf V600E. Computational and Structural Biotechnology Journal, 2021, 19, 3349-3363.	4.1	38
11	A multiscale polymerization framework towards network structure and fracture of double-network hydrogels. Npj Computational Materials, 2021, 7, .	8.7	24
12	Drugging multiple same-allele driver mutations in cancer. Expert Opinion on Drug Discovery, 2021, 16, 1-6.	5.0	10
13	Ras isoform-specific expression, chromatin accessibility, and signaling. Biophysical Reviews, 2021, 13, 489-505.	3.2	14
14	B-Raf autoinhibition in the presence and absence of 14-3-3. Structure, 2021, 29, 768-777.e2.	3.3	26
15	Dual amyloid cross-seeding reveals steric zipper-facilitated fibrillization and pathological links between protein misfolding diseases. Journal of Materials Chemistry B, 2021, 9, 3300-3316.	5.8	15
16	The mechanism of Raf activation through dimerization. Chemical Science, 2021, 12, 15609-15619.	7.4	15
17	Structural Features that Distinguish Inactive and Active PI3K Lipid Kinases. Journal of Molecular Biology, 2020, 432, 5849-5859.	4.2	28
18	The Mystery of Rap1 Suppression of Oncogenic Ras. Trends in Cancer, 2020, 6, 369-379.	7.4	23

Mingzhen Zhang

#	Article	IF	CITATIONS
19	PI3K inhibitors: review and new strategies. Chemical Science, 2020, 11, 5855-5865.	7.4	106
20	Design principles and fundamental understanding of biosensors for amyloid-β detection. Journal of Materials Chemistry B, 2020, 8, 6179-6196.	5.8	39
21	The quaternary assembly of KRas4B with Raf-1 at the membrane. Computational and Structural Biotechnology Journal, 2020, 18, 737-748.	4.1	50
22	Ca ²⁺ -Dependent Switch of Calmodulin Interaction Mode with Tandem IQ Motifs in the Scaffolding Protein IQGAP1. Biochemistry, 2019, 58, 4903-4911.	2.5	12
23	The structural basis for Ras activation of PI3Kα lipid kinase. Physical Chemistry Chemical Physics, 2019, 21, 12021-12028.	2.8	43
24	The mechanism of PI3Kl $$ ± activation at the atomic level. Chemical Science, 2019, 10, 3671-3680.	7.4	75
25	Fundamentals of cross-seeding of amyloid proteins: an introduction. Journal of Materials Chemistry B, 2019, 7, 7267-7282.	5.8	87
26	Excited-State Hydrogen-Bonding Dynamics and Coupled Proton Transfer for Luminous Molecules. , 2019, , 391-408.		0
27	Interaction of Calmodulin with the cSH2 Domain of the p85 Regulatory Subunit. Biochemistry, 2018, 57, 1917-1928.	2.5	10
28	Calmodulin and IQGAP1 activation of PI3Kα and Akt in KRAS, HRAS and NRAS-driven cancers. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2304-2314.	3.8	16
29	Tanshinones inhibit hIAPP aggregation, disaggregate preformed hIAPP fibrils, and protect cultured cells. Journal of Materials Chemistry B, 2018, 6, 56-67.	5.8	58
30	Autoinhibition in Ras effectors Raf, PI3Kα, and RASSF5: a comprehensive review underscoring the challenges in pharmacological intervention. Biophysical Reviews, 2018, 10, 1263-1282.	3.2	40
31	Molecular Recognition between AÎ ² -Specific Single-Domain Antibody and AÎ ² Misfolded Aggregates. Antibodies, 2018, 7, 25.	2.5	10
32	Calmodulin (CaM) Activates PI3Kα by Targeting the "Soft―CaM-Binding Motifs in Both the nSH2 and cSH2 Domains of p85α. Journal of Physical Chemistry B, 2018, 122, 11137-11146.	2.6	15
33	Experimental and Computational Protocols for Studies of Cross-Seeding Amyloid Assemblies. Methods in Molecular Biology, 2018, 1777, 429-447.	0.9	8
34	Dual Salt- and Thermoresponsive Programmable Bilayer Hydrogel Actuators with Pseudo-Interpenetrating Double-Network Structures. ACS Applied Materials & Interfaces, 2018, 10, 21642-21653.	8.0	142
35	Identification of a New Function of Cardiovascular Disease Drug 3-Morpholinosydnonimine Hydrochloride as an Amyloid-β Aggregation Inhibitor. ACS Omega, 2017, 2, 243-250.	3.5	12
36	Seed-Induced Heterogeneous Cross-Seeding Self-Assembly of Human and Rat Islet Polypeptides. ACS Omega, 2017, 2, 784-792.	3.5	25

Mingzhen Zhang

#	Article	IF	CITATIONS
37	Release of Cytochrome C from Bax Pores at the Mitochondrial Membrane. Scientific Reports, 2017, 7, 2635.	3.3	107
38	Phosphorylated Calmodulin Promotes PI3K Activation by Binding to the SH2 Domains. Biophysical Journal, 2017, 113, 1956-1967.	0.5	51
39	Molecular Simulations of Amyloid Structures, Toxicity, and Inhibition. Israel Journal of Chemistry, 2017, 57, 586-601.	2.3	25
40	Molecular Understanding of Aβ-hIAPP Cross-Seeding Assemblies on Lipid Membranes. ACS Chemical Neuroscience, 2017, 8, 524-537.	3.5	39
41	Salt-responsive polyzwitterionic materials for surface regeneration between switchable fouling and antifouling properties. Acta Biomaterialia, 2016, 40, 62-69.	8.3	74
42	Oncogenic Mutations Differentially Affect Bax Monomer, Dimer, and Oligomeric Pore Formation in the Membrane. Scientific Reports, 2016, 6, 33340.	3.3	11
43	HP-β-cyclodextrin as an inhibitor of amyloid-β aggregation and toxicity. Physical Chemistry Chemical Physics, 2016, 18, 20476-20485.	2.8	41
44	Molecular Understanding and Structural-Based Design of Polyacrylamides and Polyacrylates as Antifouling Materials. Langmuir, 2016, 32, 3315-3330.	3.5	90
45	A computational study of self-assembled hexapeptide inhibitors against amyloid-β (Aβ) aggregation. Physical Chemistry Chemical Physics, 2016, 19, 155-166.	2.8	18
46	Polymorphic Associations and Structures of the Cross-Seeding of Al̂² _{1–42} and hIAPP _{1–37} Polypeptides. Journal of Chemical Information and Modeling, 2015, 55, 1628-1639.	5.4	28
47	Interfacial interaction and lateral association of cross-seeding assemblies between hIAPP and rIAPP oligomers. Physical Chemistry Chemical Physics, 2015, 17, 10373-10382.	2.8	27
48	A quantitative sequence–aggregation relationship predictor applied as identification of self-assembled hexapeptides. Chemometrics and Intelligent Laboratory Systems, 2015, 145, 7-16.	3.5	10
49	Corrosion inhibition of mild steel by an imidazolium ionic liquid compound: the effect of pH and surface pre-corrosion. RSC Advances, 2015, 5, 95160-95170.	3.6	37
50	Cross-Seeding Interaction between β-Amyloid and Human Islet Amyloid Polypeptide. ACS Chemical Neuroscience, 2015, 6, 1759-1768.	3.5	78
51	Polymorphic cross-seeding amyloid assemblies of amyloid-β and human islet amyloid polypeptide. Physical Chemistry Chemical Physics, 2015, 17, 23245-23256.	2.8	38
52	Molecular understanding of a potential functional link between antimicrobial and amyloid peptides. Soft Matter, 2014, 10, 7425-7451.	2.7	96
53	Structural and Energetic Insight into the Cross-Seeding Amyloid Assemblies of Human IAPP and Rat IAPP. Journal of Physical Chemistry B, 2014, 118, 7026-7036.	2.6	34
54	De Novo Design of Self-Assembled Hexapeptides as β-Amyloid (Aβ) Peptide Inhibitors. ACS Chemical Neuroscience, 2014, 5, 972-981.	3.5	41