
## Sougata Jana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8826196/publications.pdf Version: 2024-02-01



**SOUCATA ΙΑΝΑ** 

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery.<br>Colloids and Surfaces B: Biointerfaces, 2014, 114, 36-44.                             | 2.5 | 187       |
| 2  | Aceclofenac-loaded chitosan-tamarind seed polysaccharide interpenetrating polymeric network microparticles. Colloids and Surfaces B: Biointerfaces, 2013, 105, 303-309.                   | 2.5 | 133       |
| 3  | Aceclofenac-loaded unsaturated esterified alginate/gellan gum microspheres: In vitro and in vivo assessment. International Journal of Biological Macromolecules, 2013, 57, 129-137.       | 3.6 | 111       |
| 4  | Development of chitosan-based nanoparticles through inter-polymeric complexation for oral drug delivery. Carbohydrate Polymers, 2013, 98, 870-876.                                        | 5.1 | 110       |
| 5  | In-vitro release of acyclovir loaded Eudragit RLPO® nanoparticles for sustained drug delivery.<br>International Journal of Biological Macromolecules, 2014, 67, 478-482.                  | 3.6 | 87        |
| 6  | Interpenetrating hydrogels of O -carboxymethyl Tamarind gum and alginate for monitoring delivery of acyclovir. International Journal of Biological Macromolecules, 2016, 92, 1034-1039.   | 3.6 | 58        |
| 7  | Alginate Based Nanocarriers for Drug Delivery Applications. Current Pharmaceutical Design, 2016, 22, 3399-3410.                                                                           | 0.9 | 58        |
| 8  | Pharmacokinetic evaluation of testosterone-loaded nanocapsules in rats. International Journal of<br>Biological Macromolecules, 2015, 72, 28-30.                                           | 3.6 | 52        |
| 9  | Metal ion-induced alginate–locust bean gum IPN microspheres for sustained oral delivery of<br>aceclofenac. International Journal of Biological Macromolecules, 2015, 72, 47-53.           | 3.6 | 51        |
| 10 | Development of topical gel containing aceclofenac-crospovidone solid dispersion by "Quality by<br>Design (QbD)―approach. Chemical Engineering Research and Design, 2014, 92, 2095-2105.   | 2.7 | 49        |
| 11 | Chitosan — Locust bean gum interpenetrating polymeric network nanocomposites for delivery of<br>aceclofenac. International Journal of Biological Macromolecules, 2017, 102, 878-884.      | 3.6 | 49        |
| 12 | Novel alginate hydrogel core–shell systems for combination delivery of ranitidine HCl and aceclofenac. International Journal of Biological Macromolecules, 2015, 74, 85-92.               | 3.6 | 47        |
| 13 | Gellan gum microspheres containing a novel α-amylase from marine Nocardiopsis sp. strain B2 for<br>immobilization. International Journal of Biological Macromolecules, 2014, 70, 292-299. | 3.6 | 45        |
| 14 | Biosurfactant produced from Actinomycetes nocardiopsis A17: Characterization and its biological evaluation. International Journal of Biological Macromolecules, 2015, 79, 405-412.        | 3.6 | 35        |
| 15 | Gelatin-carboxymethyl tamarind gum biocomposites: In vitro characterization & anti-inflammatory pharmacodynamics. Materials Science and Engineering C, 2016, 69, 478-485.                 | 3.8 | 32        |
| 16 | Boswellia gum resin/chitosan polymer composites: Controlled delivery vehicles for aceclofenac.<br>International Journal of Biological Macromolecules, 2015, 77, 303-306.                  | 3.6 | 31        |
| 17 | In vitro aceclofenac release from IPN matrix tablets composed of chitosan-tamarind seed polysaccharide. International Journal of Biological Macromolecules, 2014, 65, 241-245.            | 3.6 | 28        |
| 18 | Recent progress in alginate-based carriers for ocular targeting of therapeutics. Food Hydrocolloids<br>for Health, 2022, 2, 100071.                                                       | 1.6 | 17        |

Sougata Jana

0

| #  | Article                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Gellan gum/PVA Interpenetrating Network Micro-beads for Sustained Drug Delivery. Materials Today:<br>Proceedings, 2019, 11, 614-619. | 0.9 | 11        |
| 20 | Guar gum in drug delivery applications. , 2019, , 187-201.                                                                           |     | 10        |
| 21 | Marine Polysaccharides in Tailor-made Drug Delivery. Current Pharmaceutical Design, 2022, 28, 1046-1066.                             | 0.9 | 7         |
| 22 | Cationic polyelectrolyte–biopolymer complex hydrogel particles for drug delivery. , 2018, , 223-256.                                 |     | 6         |
| 23 | Nanotechnology in Bioactive Food Ingredients. , 2017, , 21-41.                                                                       |     | 5         |
| 24 | Gellan gum (GG)-based IPN microbeads for sustained drug release. Journal of Drug Delivery Science and Technology, 2022, 69, 103034.  | 1.4 | 5         |
| 25 | Natural polymeric biodegradable nanoblend for macromolecules delivery. , 2017, , 289-312.                                            |     | 4         |
| 26 | Biocomposites in ocular drug delivery. , 2017, , 139-168.                                                                            |     | 4         |
| 27 | Chitosan-based nanoparticulate systems for oral drug delivery. , 2017, , 607-638.                                                    |     | 3         |
| 28 | Chitosan-Based Interpenetrating Polymer Networks: Drug Delivery Application. , 2019, , 269-295.                                      |     | 3         |
| 29 | Cellulose Derivative-Based Bioadhesive Blend Patch for Transdermal Drug Delivery. Frontiers in<br>Materials, 0, 9, .                 | 1.2 | 3         |
| 30 | Biocomposites in therapeutic application. , 2017, , 1-29.                                                                            |     | 2         |
| 31 | Stimuli-responsive guar gum composites for colon-specific drug delivery. , 2017, , 61-79.                                            |     | 2         |
| 32 | Carrageenan-based nanomaterials in drug delivery applications. , 2021, , 365-382.                                                    |     | 2         |
| 33 | Role of Alginate in Drug Delivery Applications. , 2017, , 369-399.                                                                   |     | 1         |
| 34 | Dendrimers as Nanostructured Therapeutic Carriers. , 2017, , 139-166.                                                                |     | 0         |
| 35 | Introduction to Novel Therapeutic Carriers. , 2017, , 1-24.                                                                          |     | 0         |
|    |                                                                                                                                      |     |           |

Polysaccharides as potential materials for the delivery of therapeutic molecules. , 2019, , 173-187.

Sougata Jana

| #  | Article                                                                                                                 | IF | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 37 | Chitosan-based particulate composites: drug delivery and biomedical potential. , 2019, , 477-513.                       |    | Ο         |
| 38 | Interpenetrating polysaccharide networks as oral drug delivery modalities. , 2019, , 319-338.                           |    | 0         |
| 39 | Locust Bean Gum (LBC)-Based Systems: Drug Delivery Applications. , 2015, , 1-7.                                         |    | 0         |
| 40 | Nonsteroidal Anti-Inflammatory Drug (NSAID) Delivery: Biopolymer-Based Systems. , 2015, , 1-10.                         |    | 0         |
| 41 | Tamarind Seeds, Green Biomaterials from: Biomedical and Drug Delivery Applications. , 0, , 1-9.                         |    | Ο         |
| 42 | Carboxymethyl Polysaccharide-Based Multiunit Hydrogel Systems for Drug Delivery. , 2017, , 227-251.                     |    | 0         |
| 43 | Biopolymer-based Interpenetrating Network Hydrogels for Oral Drug Delivery. , 2017, , 197-233.                          |    | 0         |
| 44 | Interpenetrating Polymer Network in Microparticulate Systems: Drug Delivery and Biomedical Application. , 2020, , 1-23. |    | 0         |
| 45 | Chitosan-based nanoengineered drug delivery system. , 2022, , 77-95.                                                    |    | 0         |