
Po-Jung Jimmy Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8826165/publications.pdf Version: 2024-02-01

PO-JUNG JIMMY HUANG

#	Article	IF	CITATIONS
1	Homogeneous assays for aptamer-based ethanolamine sensing: no indication of target binding. Analyst, The, 2022, 147, 1348-1356.	3.5	6
2	Selection of Aptamers for Sensing Caffeine and Discrimination of Its Three Single Demethylated Analogues. Analytical Chemistry, 2022, 94, 3142-3149.	6.5	37
3	Sensing Metal Ions with Phosphorothioate-Modified DNAzymes. Methods in Molecular Biology, 2022, 2439, 277-289.	0.9	0
4	Adsorption of DNA Oligonucleotides by Self-Assembled Metalloporphyrin Nanomaterials. Langmuir, 2022, 38, 3553-3560.	3.5	6
5	Signaling Kinetics of DNA and Aptamer Biosensors Revealing Graphene Oxide Surface Heterogeneity. Journal of Analysis and Testing, 2022, 6, 20-27.	5.1	10
6	2â€Aminopurine Fluorescence Spectroscopy for Probing a Glucose Binding Aptamer. ChemBioChem, 2022, 23, .	2.6	8
7	Label-free and Dye-free Fluorescent Sensing of Tetracyclines Using a Capture-Selected DNA Aptamer. Analytical Chemistry, 2022, 94, 10175-10182.	6.5	40
8	Probing Metal-Dependent Phosphate Binding for the Catalysis of the 17E DNAzyme. Biochemistry, 2021, 60, 1909-1918.	2.5	6
9	In vitro selection and application of lanthanide-dependent DNAzymes. Methods in Enzymology, 2021, 651, 373-396.	1.0	4
10	Target Selfâ€Enhanced Selectivity in Metalâ€Specific DNAzymes. Angewandte Chemie, 2020, 132, 3601-3605.	2.0	10
11	Target Selfâ€Enhanced Selectivity in Metalâ€Specific DNAzymes. Angewandte Chemie - International Edition, 2020, 59, 3573-3577.	13.8	43
12	The Two Classic Pb ²⁺ ‣elective DNAzymes Are Related: Rational Evolution for Understanding Metal Selectivity. ChemBioChem, 2020, 21, 1293-1297.	2.6	16
13	In vitro Selection of Chemically Modified DNAzymes. ChemistryOpen, 2020, 9, 1046-1059.	1.9	28
14	Graphene oxide as a cartridge enable on-line assembly of photosensitizer for 1O2-based electrochemical aptasensing. Mikrochimica Acta, 2020, 187, 477.	5.0	3
15	Sensing Adenosine and ATP by Aptamers and Gold Nanoparticles: Opposite Trends of Color Change from Domination of Target Adsorption Instead of Aptamer Binding. ACS Sensors, 2020, 5, 2885-2893.	7.8	59
16	Dissecting the Effect of Salt for More Sensitive Label-Free Colorimetric Detection of DNA Using Gold Nanoparticles. Analytical Chemistry, 2020, 92, 13354-13360.	6.5	50
17	Selection of a metal ligand modified DNAzyme for detecting Ni2+. Biosensors and Bioelectronics, 2020, 165, 112285.	10.1	34
18	Good's buffers have various affinities to gold nanoparticles regulating fluorescent and colorimetric DNA sensing. Chemical Science, 2020, 11, 6795-6804.	7.4	30

PO-JUNG JIMMY HUANG

#	Article	IF	CITATIONS
19	Sensitivity of a classic DNAzyme for Pb ²⁺ modulated by cations, anions and buffers. Analyst, The, 2020, 145, 1384-1388.	3.5	14
20	Phosphorothioate DNA Mediated Sequence-Insensitive Etching and Ripening of Silver Nanoparticles. Frontiers in Chemistry, 2019, 7, 198.	3.6	5
21	Nanoceria as a DNase I mimicking nanozyme. Chemical Communications, 2019, 55, 13215-13218.	4.1	61
22	Instantaneous Iodine-Assisted DNAzyme Cleavage of Phosphorothioate RNA. Biochemistry, 2019, 58, 422-429.	2.5	5
23	Reselection Yielding a Smaller and More Active Silver-Specific DNAzyme. ACS Omega, 2018, 3, 15174-15181.	3.5	6
24	Misfolding of a DNAzyme for ultrahigh sodium selectivity over potassium. Nucleic Acids Research, 2018, 46, 10262-10271.	14.5	21
25	An Exceptionally Selective DNA Cooperatively Binding Two Ca ²⁺ Ions. ChemBioChem, 2017, 18, 518-522.	2.6	63
26	Graphene oxide surface blocking agents can increase the DNA biosensor sensitivity. Biotechnology Journal, 2016, 11, 780-787.	3.5	43
27	DNA Adsorption by ZnO Nanoparticles near Its Solubility Limit: Implications for DNA Fluorescence Quenching and DNAzyme Activity Assays. Langmuir, 2016, 32, 5672-5680.	3.5	63
28	Liposome/Graphene Oxide Interaction Studied by Isothermal Titration Calorimetry. Langmuir, 2016, 32, 2458-2463.	3.5	30
29	<i>In Vitro</i> Selection of a DNAzyme Cooperatively Binding Two Lanthanide Ions for RNA Cleavage. Biochemistry, 2016, 55, 2518-2525.	2.5	38
30	Distinction of Individual Lanthanide Ions with a DNAzyme Beacon Array. ACS Sensors, 2016, 1, 732-738.	7.8	44
31	Comparison of Graphene Oxide and Reduced Graphene Oxide for DNA Adsorption and Sensing. Langmuir, 2016, 32, 10776-10783.	3.5	123
32	A DNAzyme requiring two different metal ions at two distinct sites. Nucleic Acids Research, 2016, 44, 354-363.	14.5	80
33	Hg ²⁺ detection using a phosphorothioate RNA probe adsorbed on graphene oxide and a comparison with thymine-rich DNA. Analyst, The, 2016, 141, 3788-3793.	3.5	32
34	An Ultrasensitive Light-up Cu ²⁺ Biosensor Using a New DNAzyme Cleaving a Phosphorothioate-Modified Substrate. Analytical Chemistry, 2016, 88, 3341-3347.	6.5	94
35	Covalent linking DNA to graphene oxide and its comparison with physisorbed probes for Hg2+ detection. Biosensors and Bioelectronics, 2016, 79, 244-250.	10.1	46
36	G-Quadruplex DNA for Fluorescent and Colorimetric Detection of Thallium(I). ACS Sensors, 2016, 1, 137-143.	7.8	61

PO-JUNG JIMMY HUANG

#	Article	IF	CITATIONS
37	Rational evolution of Cd ²⁺ -specific DNAzymes with phosphorothioate modified cleavage junction and Cd ²⁺ sensing. Nucleic Acids Research, 2015, 43, 6125-6133.	14.5	136
38	Cleavable Molecular Beacon for Hg ²⁺ Detection Based on Phosphorothioate RNA Modifications. Analytical Chemistry, 2015, 87, 6890-6895.	6.5	67
39	A new heavy lanthanide-dependent DNAzyme displaying strong metal cooperativity and unrescuable phosphorothioate effect. Nucleic Acids Research, 2015, 43, 461-469.	14.5	75
40	DNAzyme Hybridization, Cleavage, Degradation, and Sensing in Undiluted Human Blood Serum. Analytical Chemistry, 2015, 87, 4001-4007.	6.5	52
41	Inhibiting the VIM-2 Metallo-β-Lactamase by Graphene Oxide and Carbon Nanotubes. ACS Applied Materials & Interfaces, 2015, 7, 9898-9903.	8.0	25
42	Desulfurization Activated Phosphorothioate DNAzyme for the Detection of Thallium. Analytical Chemistry, 2015, 87, 10443-10449.	6.5	28
43	Biochemical Characterization of a Lanthanide-Dependent DNAzyme with Normal and Phosphorothioate-Modified Substrates. Biochemistry, 2015, 54, 6132-6138.	2.5	36
44	Glutathione-s-transferase modified electrodes for detecting anticancer drugs. Biosensors and Bioelectronics, 2014, 58, 232-236.	10.1	44
45	Degradable starch nanoparticle assisted ethanol precipitation of DNA. Carbohydrate Polymers, 2014, 110, 354-359.	10.2	11
46	Two Pb2+-specific DNAzymes with opposite trends in split-site-dependent activity. Chemical Communications, 2014, 50, 4442.	4.1	21
47	In Vitro Selection of a New Lanthanide-Dependent DNAzyme for Ratiometric Sensing Lanthanides. Analytical Chemistry, 2014, 86, 9993-9999.	6.5	82
48	Ultrasensitive DNAzyme Beacon for Lanthanides and Metal Speciation. Analytical Chemistry, 2014, 86, 1816-1821.	6.5	133
49	Sensing Parts-per-Trillion Cd ²⁺ , Hg ²⁺ , and Pb ²⁺ Collectively and Individually Using Phosphorothioate DNAzymes. Analytical Chemistry, 2014, 86, 5999-6005.	6.5	102
50	Functional nucleic acids for detecting bacteria. Reviews in Analytical Chemistry, 2013, 32, 77-89.	3.2	12
51	Separation of Short Single- and Double-Stranded DNA Based on Their Adsorption Kinetics Difference on Graphene Oxide. Nanomaterials, 2013, 3, 221-228.	4.1	51
52	DNAâ€Lengthâ€Dependent Fluorescence Signaling on Graphene Oxide Surface. Small, 2012, 8, 977-983.	10.0	131
53	Molecular Beacon Lighting up on Graphene Oxide. Analytical Chemistry, 2012, 84, 4192-4198.	6.5	154
54	Synergistic pH effect for reversible shuttling aptamer-based biosensors between graphene oxide and target molecules. Journal of Materials Chemistry, 2011, 21, 8991.	6.7	57

#	Article	IF	CITATIONS
55	Immobilization of DNA on Magnetic Microparticles for Mercury Enrichment and Detection with Flow Cytometry. Chemistry - A European Journal, 2011, 17, 5004-5010.	3.3	31
56	Flow Cytometry-Assisted Detection of Adenosine in Serum with an Immobilized Aptamer Sensor. Analytical Chemistry, 2010, 82, 4020-4026.	6.5	94