
Rolf Dach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/882613/publications.pdf Version: 2024-02-01

ROLE DACH

#	Article	IF	CITATIONS
1	GNSS processing at CODE: status report. Journal of Geodesy, 2009, 83, 353-365.	3.6	233
2	CODE's new solar radiation pressure model for GNSS orbit determination. Journal of Geodesy, 2015, 89, 775-791.	3.6	196
3	Absolute IGS antenna phase center model igs08.atx: status and potential improvements. Journal of Geodesy, 2016, 90, 343-364.	3.6	164
4	Apparent clock variations of the Block IIF-1 (SVN62) GPS satellite. GPS Solutions, 2012, 16, 303-313.	4.3	154
5	High-rate GPS clock corrections from CODE: support of 1ÂHz applications. Journal of Geodesy, 2009, 83, 1083-1094.	3.6	153
6	CODE's five-system orbit and clock solution—the challenges of multi-GNSS data analysis. Journal of Geodesy, 2017, 91, 345-360.	3.6	147
7	Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination. Journal of Geodesy, 2009, 83, 1145-1162.	3.6	129
8	Galileo orbit and clock quality of the IGS Multi-GNSS Experiment. Advances in Space Research, 2015, 55, 269-281.	2.6	127
9	Improved Constraints on Models of Glacial Isostatic Adjustment: A Review of the Contribution of Ground-Based Geodetic Observations. Surveys in Geophysics, 2010, 31, 465-507.	4.6	97
10	Satellite laser ranging to GPS and GLONASS. Journal of Geodesy, 2015, 89, 725-743.	3.6	82
11	Multi-technique comparison of troposphere zenith delays and gradients during CONT08. Journal of Geodesy, 2011, 85, 395-413.	3.6	74
12	Geocenter coordinates estimated from GNSS data as viewed by perturbation theory. Advances in Space Research, 2013, 51, 1047-1064.	2.6	73
13	The CODE ambiguity-fixed clock and phase bias analysis products: generation, properties, and performance. Journal of Geodesy, 2021, 95, 1.	3.6	71
14	Time variable Earth's gravity field from SLR satellites. Journal of Geodesy, 2015, 89, 945-960.	3.6	57
15	Combination of GNSS and SLR observations using satellite co-locations. Journal of Geodesy, 2011, 85, 257-272.	3.6	54
16	Impact of the arc length on GNSS analysis results. Journal of Geodesy, 2016, 90, 365-378.	3.6	54
17	Overview of CODE's MGEX solution with the focus on Galileo. Advances in Space Research, 2020, 66, 2786-2798.	2.6	50
18	Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame. Journal of Geodesy, 2014, 88, 789-804.	3.6	47

Rolf Dach

#	Article	IF	CITATIONS
19	Time transfer using GPS carrier phase: error propagation and results. Journal of Geodesy, 2003, 77, 1-14.	3.6	46
20	Homogeneous reprocessing of GPS, GLONASS and SLR observations. Journal of Geodesy, 2014, 88, 625-642.	3.6	44
21	Estimation of satellite antenna phase center offsets for Galileo. Journal of Geodesy, 2016, 90, 773-785.	3.6	44
22	Continuous geodetic time-transfer analysis methods. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 1250-1259.	3.0	43
23	Evaluation of the impact of atmospheric pressure loading modeling on GNSS data analysis. Journal of Geodesy, 2011, 85, 75-91.	3.6	43
24	System-specific systematic errors in earth rotation parameters derived from GPS, GLONASS, and Galileo. GPS Solutions, 2020, 24, 1.	4.3	37
25	Impact of GPS antenna phase center variations on precise orbits of the GOCE satellite. Advances in Space Research, 2011, 47, 1885-1893.	2.6	35
26	Impact of loading displacements on SLR-derived parameters and on the consistency between GNSS and SLR results. Journal of Geodesy, 2013, 87, 751-769.	3.6	35
27	Improved antenna phase center models for GLONASS. GPS Solutions, 2011, 15, 49-65.	4.3	32
28	GNSS scale determination using calibrated receiver and Galileo satellite antenna patterns. Journal of Geodesy, 2020, 94, 1.	3.6	30
29	European Gravity Service for Improved Emergency Management (EGSIEM)—from concept to implementation. Geophysical Journal International, 2019, 218, 1572-1590.	2.4	27
30	Network Effects and Handling of the Geocenter Motion in Multiâ€GNSS Processing. Journal of Geophysical Research: Solid Earth, 2019, 124, 5970-5989.	3.4	27
31	Flight Characterization of New Generation GNSS Satellite Clocks. Navigation, Journal of the Institute of Navigation, 2012, 59, 291-302.	2.8	25
32	GPS clock correction estimation for near real-time orbit determination applications. Aerospace Science and Technology, 2009, 13, 415-422.	4.8	24
33	Geocenter Coordinates from GNSS and Combined GNSS-SLR Solutions Using Satellite Co-locations. International Association of Geodesy Symposia, 2014, , 129-134.	0.4	22
34	GCSP: Realisation and maintenance of the Galileo Terrestrial Reference Frame. Advances in Space Research, 2011, 47, 174-185.	2.6	21
35	The CODE MGEX Orbit and Clock Solution. International Association of Geodesy Symposia, 2015, , 767-773.	0.4	20
36	GNSS related periodic signals in coordinate time-series from Precise Point Positioning. Geophysical Journal International, 2017, 208, 1449-1464.	2.4	19

Rolf Dach

#	Article	IF	CITATIONS
37	Review of recent GNSS modelling improvements based on CODEs Repro3 contribution. Advances in Space Research, 2021, 68, 1263-1280.	2.6	19
38	CODE's new ultra-rapid orbit and ERP products for the IGS. GPS Solutions, 2016, 20, 239-250.	4.3	18
39	AIUB-CHAMP02S: The influence of GNSS model changes on gravity field recovery using spaceborne GPS. Advances in Space Research, 2010, 45, 215-224.	2.6	17
40	SLR, GRACE and Swarm Gravity Field Determination and Combination. Remote Sensing, 2019, 11, 956.	4.0	17
41	Improving GLONASS orbit quality by re-estimating satellite antenna offsets. Advances in Space Research, 2019, 63, 3835-3847.	2.6	17
42	Dependency of geodynamic parameters on the GNSS constellation. Journal of Geodesy, 2018, 92, 93-104.	3.6	15
43	An empirical solar radiation pressure model for satellites moving in the orbit-normal mode. Advances in Space Research, 2020, 65, 235-250.	2.6	14
44	Effects of unmodelled tidal displacements in GPS and GLONASS coordinate time-series. Geophysical Journal International, 2018, 214, 2195-2206.	2.4	12
45	Sub-daily polar motion from GPS, GLONASS, and Galileo. Journal of Geodesy, 2021, 95, 1.	3.6	11
46	Loading-Induced Deformation Due to Atmosphere, Ocean and Hydrology: Model Comparisons and the Impact on Global SLR, VLBI and GNSS Solutions. International Association of Geodesy Symposia, 2015, , 71-77.	0.4	9
47	A comment on the article "A collinearity diagnosis of the GNSS geocenter determination―by P.ÂRebischung, Z.ÂAltamimi, and T.ÂSpringer. Journal of Geodesy, 2015, 89, 189-194.	3.6	6
48	Long polar motion series: Facts and insights. Advances in Space Research, 2020, 66, 2487-2515.	2.6	6
49	Validation of the EGSIEM-REPRO GNSS Orbits and Satellite Clock Corrections. Remote Sensing, 2020, 12, 2322.	4.0	5
50	Simulation of tracking scenarios to LAGEOS and Etalon satellites. Journal of Geodesy, 2020, 94, 1.	3.6	2
51	Near Real-Time Coordinate Estimation from Double-Difference GNSS Data. International Association of Geodesy Symposia, 2015, , 691-697.	0.4	0
52	Monitoring of Antenna Changes at IGS Stations in Iceland. International Association of Geodesy Symposia, 2015, , 579-585.	0.4	0