
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8825867/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                          | IF                     | CITATIONS   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|
| 1  | The tropospheric cycle of H <sub>2</sub> : a critical review. Tellus, Series B: Chemical and<br>Physical Meteorology, 2022, 61, 500.                                                                                                                             | 1.6                    | 196         |
| 2  | The dependence of soil H <sub>2</sub> uptake on temperature and moisture: a reanalysis of<br>laboratory data. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 1040.                                                                               | 1.6                    | 12          |
| 3  | Deposition velocity of H <sub>2</sub> : a new algorithm for its dependence on soil moisture<br>and temperature. Tellus, Series B: Chemical and Physical Meteorology, 2022, 65, 19904.                                                                            | 1.6                    | 12          |
| 4  | Dry deposition of molecular hydrogen in the presence of H <sub>2</sub> production. Tellus,<br>Series B: Chemical and Physical Meteorology, 2022, 65, 20620.                                                                                                      | 1.6                    | 3           |
| 5  | Detection of nitrous acid in the atmospheric simulation chamber SAPHIR using open-path incoherent<br>broadband cavity-enhanced absorption spectroscopy and extractive long-path absorption photometry.<br>Atmospheric Measurement Techniques, 2022, 15, 945-964. | 3.1                    | 3           |
| 6  | Air quality observations onboard commercial and targeted Zeppelin flights in Germany – a platform for high-resolution trace-gas and aerosol measurements within the planetary boundary layer.<br>Atmospheric Measurement Techniques, 2022, 15, 3827-3842.        | 3.1                    | 1           |
| 7  | Investigation of the limonene photooxidation by OH at different NO concentrations in the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large) Tj ETQq1 1                                                                  | 0.78434 <b>.4</b> rgBT | /@verlock 1 |
| 8  | Experimental and theoretical study on the impact of a nitrate group on the chemistry of alkoxy radicals. Physical Chemistry Chemical Physics, 2021, 23, 5474-5495.                                                                                               | 2.8                    | 20          |
| 9  | Gas-Particle Partitioning and SOA Yields of Organonitrate Products from NO <sub>3</sub> -Initiated<br>Oxidation of Isoprene under Varied Chemical Regimes. ACS Earth and Space Chemistry, 2021, 5, 785-800.                                                      | 2.7                    | 15          |
| 10 | Characterization of a chemical modulation reactor (CMR) for the measurement of atmospheric concentrations of hydroxyl radicals with a laser-induced fluorescence instrument. Atmospheric Measurement Techniques, 2021, 14, 1851-1877.                            | 3.1                    | 8           |
| 11 | Uptake of Waterâ€soluble Gasâ€phase Oxidation Products Drives Organic Particulate Pollution in Beijing.<br>Geophysical Research Letters, 2021, 48, e2020GL091351.                                                                                                | 4.0                    | 24          |
| 12 | Comparison of formaldehyde measurements by Hantzsch, CRDS and DOAS in the SAPHIR chamber.<br>Atmospheric Measurement Techniques, 2021, 14, 4239-4253.                                                                                                            | 3.1                    | 14          |
| 13 | Highly oxygenated organic molecule (HOM) formation in the isoprene oxidation by<br>NO <sub>3</sub> radical. Atmospheric Chemistry and Physics, 2021, 21,<br>9681-9704.                                                                                           | 4.9                    | 30          |
| 14 | Atmospheric photooxidation and ozonolysis of Δ <sup>3</sup> -carene and<br>3-caronaldehyde: rate constants and product yields. Atmospheric Chemistry and Physics, 2021, 21,<br>12665-12685.                                                                      | 4.9                    | 8           |
| 15 | Atmospheric photo-oxidation of myrcene: OH reaction rate constant, gas-phase oxidation products and radical budgets. Atmospheric Chemistry and Physics, 2021, 21, 16067-16091.                                                                                   | 4.9                    | 4           |
| 16 | Highly Oxygenated Organic Nitrates Formed from NO <sub>3</sub> Radical-Initiated Oxidation of β-Pinene. Environmental Science & Technology, 2021, 55, 15658-15671.                                                                                               | 10.0                   | 17          |
| 17 | Importance of isomerization reactions for OH radical regeneration from the photo-oxidation of isoprene investigated in the atmospheric simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2020, 20, 3333-3355.                                        | 4.9                    | 44          |
| 18 | No Evidence for a Significant Impact of Heterogeneous Chemistry on Radical Concentrations in the<br>North China Plain in Summer 2014. Environmental Science & Technology, 2020, 54, 5973-5979.                                                                   | 10.0                   | 67          |

| #  | Article                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Impact of NO <sub><i>x</i></sub> on secondary<br>organic aerosolÂ(SOA) formation from <i>î±</i> -pinene and<br><i>l²</i> -pinene photooxidation: the role of highly oxygenated organic<br>nitrates. Atmospheric Chemistry and Physics, 2020, 20, 10125-10147. | 4.9  | 40        |
| 20 | Evolution of NO <sub>3</sub> reactivity during the oxidation of isoprene.<br>Atmospheric Chemistry and Physics, 2020, 20, 10459-10475.                                                                                                                        | 4.9  | 10        |
| 21 | Photooxidation of pinonaldehyde at ambient conditions investigated in the atmospheric simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2020, 20, 13701-13719.                                                                                    | 4.9  | 6         |
| 22 | Fast Photochemistry in Wintertime Haze: Consequences for Pollution Mitigation Strategies.<br>Environmental Science & Technology, 2019, 53, 10676-10684.                                                                                                       | 10.0 | 147       |
| 23 | Experimental budgets of OH, HO <sub>2</sub> , and<br>RO <sub>2</sub> radicals and implications for ozone formation in the<br>Pearl River Delta in China 2014. Atmospheric Chemistry and Physics, 2019, 19, 7129-7150.                                         | 4.9  | 92        |
| 24 | Investigation of the <i>α</i> -pinene photooxidation by OH in the<br>atmospheric simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2019, 19, 11635-11649.                                                                                         | 4.9  | 17        |
| 25 | Effects of NO <sub><i>x</i></sub> and<br>SO <sub>2</sub> on the secondary organic aerosol formation from<br>photooxidation of <i>α</i> -pinene and limonene. Atmospheric Chemistry and<br>Physics. 2018. 18. 1611-1628.                                       | 4.9  | 110       |
| 26 | Evaluation of OH and HO <sub>2</sub> concentrations and their budgets during photooxidation of 2-methyl-3-butene-2-ol (MBO) in the atmospheric simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2018, 18, 11409-11422.                           | 4.9  | 20        |
| 27 | Wintertime photochemistry in Beijing: observations of<br>RO <sub><i>x</i></sub> radical concentrations<br>in the North China Plain during the BEST-ONE campaign. Atmospheric Chemistry and Physics, 2018, 18,<br>12391-12411.                                 | 4.9  | 177       |
| 28 | The IACOS NO <sub><i>x</i></sub> instrument –<br>design, operation and first results from deployment aboard passenger aircraft. Atmospheric<br>Measurement Techniques, 2018, 11, 3737-3757.                                                                   | 3.1  | 14        |
| 29 | Investigation of the oxidation of methyl vinyl ketone (MVK) by OH radicals in the atmospheric simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2018, 18, 8001-8016.                                                                              | 4.9  | 22        |
| 30 | Ambient and laboratory observations of organic ammonium salts in PM <sub>1</sub> . Faraday<br>Discussions, 2017, 200, 331-351.                                                                                                                                | 3.2  | 14        |
| 31 | OH reactivity at a rural site (Wangdu) in the North China Plain: contributions from OH reactants and experimental OH budget. Atmospheric Chemistry and Physics, 2017, 17, 645-661.                                                                            | 4.9  | 63        |
| 32 | Radical chemistry at a rural site (Wangdu) in the North China Plain: observation and model<br>calculations of OH, HO <sub>2</sub> and<br>RO <sub>2</sub> radicals. Atmospheric Chemistry and Physics, 2017, 17,<br>663-690.                                   | 4.9  | 239       |
| 33 | Investigation of the <i>î²</i> -pinene photooxidation by OH in the atmosphere simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2017, 17, 6631-6650.                                                                                              | 4.9  | 27        |
| 34 | Comparison of OH reactivity measurements in the atmospheric simulation chamber SAPHIR.<br>Atmospheric Measurement Techniques, 2017, 10, 4023-4053.                                                                                                            | 3.1  | 74        |
| 35 | A new plant chamber facility, PLUS, coupled to the atmosphere simulation chamber SAPHIR.<br>Atmospheric Measurement Techniques, 2016, 9, 1247-1259.                                                                                                           | 3.1  | 15        |
| 36 | Investigation of potential interferences in the detection of atmospheric<br>RO <sub><i>x</i></sub> radicals by<br>laser-induced fluorescence under dark conditions. Atmospheric Measurement Techniques, 2016, 9,<br>1431-1447.                                | 3.1  | 49        |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal,<br>methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor. Atmospheric Measurement<br>Techniques, 2016, 9, 423-440. | 3.1  | 93        |
| 38 | Twenty years of ambient observations of nitrogen oxides and specified hydrocarbons in air masses dominated by traffic emissions in Germany. Faraday Discussions, 2016, 189, 407-437.                                  | 3.2  | 32        |
| 39 | Secondary organic aerosol formation from hydroxyl radical oxidation and ozonolysis of monoterpenes. Atmospheric Chemistry and Physics, 2015, 15, 991-1012.                                                            | 4.9  | 67        |
| 40 | Evidence for an unidentified non-photochemical ground-level source of formaldehyde in the Po<br>Valley with potential implications for ozone production. Atmospheric Chemistry and Physics, 2015, 15,<br>1289-1298.   | 4.9  | 36        |
| 41 | Response to Comment on "Missing gas-phase source of HONO inferred from Zeppelin measurements in the troposphereâ€. Science, 2015, 348, 1326-1326.                                                                     | 12.6 | 10        |
| 42 | Intercomparison of Hantzsch and fiber-laser-induced-fluorescence formaldehyde measurements.<br>Atmospheric Measurement Techniques, 2014, 7, 1571-1580.                                                                | 3.1  | 24        |
| 43 | Missing Gas-Phase Source of HONO Inferred from Zeppelin Measurements in the Troposphere. Science, 2014, 344, 292-296.                                                                                                 | 12.6 | 154       |
| 44 | Maximum efficiency in the hydroxyl-radical-based self-cleansing of the troposphere. Nature<br>Geoscience, 2014, 7, 559-563.                                                                                           | 12.9 | 110       |
| 45 | Parameterization of Thermal Properties of Aging Secondary Organic Aerosol Produced by<br>Photo-Oxidation of Selected Terpene Mixtures. Environmental Science & Technology, 2014, 48,<br>6168-6176.                    | 10.0 | 14        |
| 46 | Suppression of new particle formation from monoterpene oxidation by<br>NO <sub>x</sub> . Atmospheric Chemistry and Physics, 2014, 14, 2789-2804.                                                                      | 4.9  | 63        |
| 47 | The balances of mixing ratios and segregation intensity: a case study from the field (ECHO 2003).<br>Atmospheric Chemistry and Physics, 2014, 14, 10333-10362.                                                        | 4.9  | 8         |
| 48 | Atmospheric photochemistry of aromatic hydrocarbons: OH budgets during SAPHIR chamber experiments. Atmospheric Chemistry and Physics, 2014, 14, 6941-6952.                                                            | 4.9  | 21        |
| 49 | Missing SO <sub>2</sub> oxidant in the coastal atmosphere? –<br>observations from high-resolution measurements of OH and atmospheric sulfur compounds.<br>Atmospheric Chemistry and Physics, 2014, 14, 12209-12223.   | 4.9  | 38        |
| 50 | Nighttime observation and chemistry of HO <sub>x</sub> in the Pearl River<br>Delta and Beijing in summer 2006. Atmospheric Chemistry and Physics, 2014, 14, 4979-4999.                                                | 4.9  | 40        |
| 51 | Modeling of HCHO and CHOCHO at a semi-rural site in southern China during the PRIDE-PRD2006 campaign. Atmospheric Chemistry and Physics, 2014, 14, 12291-12305.                                                       | 4.9  | 59        |
| 52 | OH regeneration from methacrolein oxidation investigated in the atmosphere simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2014, 14, 7895-7908.                                                         | 4.9  | 38        |
| 53 | Climate and Weather of the Sun-Earth System (CAWSES). Springer Atmospheric Sciences, 2013, , .                                                                                                                        | 0.3  | 16        |
| 54 | Experimental evidence for efficient hydroxyl radical regeneration in isoprene oxidation. Nature<br>Geoscience, 2013, 6, 1023-1026.                                                                                    | 12.9 | 132       |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Does the onset of new particle formation occur in the planetary boundary layer?. , 2013, , .                                                                                                                                 |     | 1         |
| 56 | Stable carbon isotope ratios of toluene in the boundary layer and the lower free troposphere.<br>Atmospheric Chemistry and Physics, 2013, 13, 11059-11071.                                                                   | 4.9 | 17        |
| 57 | Missing OH source in a suburban environment near Beijing: observed and modelled OH and<br>HO <sub>2</sub> concentrations in summer 2006. Atmospheric Chemistry<br>and Physics, 2013, 13, 1057-1080.                          | 4.9 | 188       |
| 58 | Extending water vapor trend observations over Boulder into the tropopause region: Trend<br>uncertainties and resulting radiative forcing. Journal of Geophysical Research D: Atmospheres, 2013,<br>118, 11269-11284.         | 3.3 | 28        |
| 59 | Seasonal measurements of OH, NO <i><sub>x</sub></i> , and J(O <sup>1</sup> D) at Mace Head, Ireland.<br>Geophysical Research Letters, 2013, 40, 1659-1663.                                                                   | 4.0 | 8         |
| 60 | Intercomparison of NO <sub>3</sub> radical detection instruments in the atmosphere simulation chamber SAPHIR. Atmospheric Measurement Techniques, 2013, 6, 1111-1140.                                                        | 3.1 | 49        |
| 61 | Do Galactic Cosmic Rays Impact the Cirrus Cloud Cover?. Springer Atmospheric Sciences, 2013, , 79-87.                                                                                                                        | 0.3 | Ο         |
| 62 | Comparison of OH concentration measurements by DOAS and LIF during SAPHIR chamber experiments at high OH reactivity and low NO concentration. Atmospheric Measurement Techniques, 2012, 5, 1611-1626.                        | 3.1 | 75        |
| 63 | Comparison of N <sub>2</sub> O <sub>5</sub><br>mixing ratios during NO3Comp 2007 in SAPHIR. Atmospheric Measurement Techniques, 2012, 5, 2763-2777.                                                                          | 3.1 | 21        |
| 64 | Exploring the atmospheric chemistry of nitrous acid (HONO) at a rural site in Southern China.<br>Atmospheric Chemistry and Physics, 2012, 12, 1497-1513.                                                                     | 4.9 | 211       |
| 65 | Observation and modelling of OH and HO <sub>2</sub> concentrations in<br>the Pearl River Delta 2006: a missing OH source in a VOC rich atmosphere. Atmospheric Chemistry and<br>Physics, 2012, 12, 1541-1569.                | 4.9 | 269       |
| 66 | Comparisons of observed and modeled OH and HO <sub>2</sub><br>concentrations during the ambient measurement period of the<br>HO <sub>x</sub> Comp field campaign. Atmospheric Chemistry and Physics,<br>2012, 12, 2567-2585. | 4.9 | 30        |
| 67 | HO <sub>x</sub> budgets during HOxComp: A case study of HO <sub>x</sub> chemistry under<br>NO <sub>x</sub> â€limited conditions. Journal of Geophysical Research, 2012, 117, .                                               | 3.3 | 38        |
| 68 | SOA from limonene: role of NO <sub>3</sub> in its generation and degradation. Atmospheric Chemistry and Physics, 2011, 11, 3879-3894.                                                                                        | 4.9 | 123       |
| 69 | Detection of HO <sub>2</sub> by laser-induced fluorescence: calibration<br>and interferences from RO <sub>2</sub> radicals. Atmospheric<br>Measurement Techniques, 2011, 4, 1209-1225.                                       | 3.1 | 199       |
| 70 | Atmospheric OH reactivities in the Pearl River Delta – China in summer 2006: measurement and model results. Atmospheric Chemistry and Physics, 2010, 10, 11243-11260.                                                        | 4.9 | 231       |
| 71 | lsotope effect in the formation of H <sub>2</sub> from<br>H <sub>2</sub> CO studied at the atmospheric simulation chamber SAPHIR.<br>Atmospheric Chemistry and Physics, 2010, 10, 5343-5357.                                 | 4.9 | 25        |
| 72 | Intercomparison of measurements of NO <sub>2</sub> concentrations in<br>the atmosphere simulation chamber SAPHIR during the NO3Comp campaign. Atmospheric Measurement<br>Techniques, 2010, 3, 21-37.                         | 3.1 | 77        |

FRANZ ROHRER

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | A correlation study of highâ€altitude and midaltitude clouds and galactic cosmic rays by MIPASâ€Envisat.<br>Journal of Geophysical Research, 2010, 115, .                                                     | 3.3  | 8         |
| 74 | Intercomparison of peroxy radical measurements obtained at atmospheric conditions by laser-induced fluorescence and electron spin resonance spectroscopy. Atmospheric Measurement Techniques, 2009, 2, 55-64. | 3.1  | 30        |
| 75 | High static stability in the mixing layer above the extratropical tropopause. Journal of Geophysical<br>Research, 2009, 114, .                                                                                | 3.3  | 44        |
| 76 | Amplified Trace Gas Removal in the Troposphere. Science, 2009, 324, 1702-1704.                                                                                                                                | 12.6 | 550       |
| 77 | lsoprene oxidation by nitrate radical: alkyl nitrate and secondary organic aerosol yields. Atmospheric<br>Chemistry and Physics, 2009, 9, 6685-6703.                                                          | 4.9  | 208       |
| 78 | Statistical analysis of water vapour and ozone in the UT/LS observed during SPURT and MOZAIC.<br>Atmospheric Chemistry and Physics, 2008, 8, 6603-6615.                                                       | 4.9  | 30        |
| 79 | Simulation chamber investigation of the reactions of ozone with shortâ€chained alkenes. Journal of<br>Geophysical Research, 2007, 112, .                                                                      | 3.3  | 83        |
| 80 | On the use of nonmethane hydrocarbons for the determination of age spectra in the lower stratosphere. Journal of Geophysical Research, 2007, 112, .                                                           | 3.3  | 14        |
| 81 | Intercomparison of Two Hydroxyl Radical Measurement Techniques at the Atmosphere Simulation<br>Chamber SAPHIR. Journal of Atmospheric Chemistry, 2007, 56, 187-205.                                           | 3.2  | 76        |
| 82 | Global distribution pattern of anthropogenic nitrogen oxide emissions: Correlation analysis of satellite measurements and model calculations. Journal of Geophysical Research, 2006, 111, .                   | 3.3  | 44        |
| 83 | Seasonal variations and profile measurements of photolysis frequenciesj(O1D) andj(NO2) at the ECHO forest field site. Journal of Geophysical Research, 2006, 111, .                                           | 3.3  | 8         |
| 84 | Simulation chamber studies on the NO3chemistry of atmospheric aldehydes. Geophysical Research<br>Letters, 2006, 33, n/a-n/a.                                                                                  | 4.0  | 24        |
| 85 | Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation.<br>Nature, 2006, 442, 184-187.                                                                           | 27.8 | 352       |
| 86 | Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR.<br>Atmospheric Chemistry and Physics, 2005, 5, 2189-2201.                                                         | 4.9  | 237       |
| 87 | Actinometric measurements of NO <sub>2</sub> photolysis frequencies in the atmosphere simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2005, 5, 493-503.                                         | 4.9  | 82        |
| 88 | Vertical profiles of HDO/H2O in the troposphere. Journal of Geophysical Research, 2005, 110, .                                                                                                                | 3.3  | 40        |
| 89 | Kinetic Study of the OH-isoprene and O3-isoprene reaction in the atmosphere simulation chamber, SAPHIR. Geophysical Research Letters, 2004, 31, n/a-n/a.                                                      | 4.0  | 37        |
| 90 | On the decay of stratospheric pollutants: Diagnosing the longest-lived eigenmode. Journal of<br>Geophysical Research, 2004, 109, .                                                                            | 3.3  | 9         |

FRANZ ROHRER

| #   | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Seasonal variability and trends of volatile organic compounds in the lower polar troposphere.<br>Journal of Geophysical Research, 2003, 108, n/a-n/a.                                                                                        | 3.3 | 33        |
| 92  | Concentration and stable carbon isotopic composition of ethane and benzene using a global<br>three-dimensional isotope inclusive chemical tracer model. Journal of Geophysical Research, 2003, 108,<br>n/a-n/a.                              | 3.3 | 18        |
| 93  | OH in the coastal boundary layer of Crete during MINOS: Measurements and relationship with ozone photolysis. Atmospheric Chemistry and Physics, 2003, 3, 639-649.                                                                            | 4.9 | 86        |
| 94  | Tritiated water vapor in the stratosphere: Vertical profiles and residence time. Journal of Geophysical Research, 2002, 107, ACH 8-1.                                                                                                        | 3.3 | 27        |
| 95  | Free Radicals and Fast Photochemistry during BERLIOZ. Journal of Atmospheric Chemistry, 2002, 42, 359-394.                                                                                                                                   | 3.2 | 85        |
| 96  | Actinic Radiation and Photolysis Processes in the Lower Troposphere: Effect of Clouds and Aerosols.<br>Journal of Atmospheric Chemistry, 2002, 42, 413-441.                                                                                  | 3.2 | 20        |
| 97  | Free Radicals and Fast Photochemistry during BERLIOZ. , 2002, , 359-394.                                                                                                                                                                     |     | 20        |
| 98  | Actinic Radiation and Photolysis Processes in the Lower Troposphere: Effect of Clouds and Aerosols. , 2002, , 413-441.                                                                                                                       |     | 4         |
| 99  | Intercomparison of NO2photolysis frequency measurements by actinic flux spectroradiometry and chemical actinometry during JCOM97. Geophysical Research Letters, 2000, 27, 1115-1118.                                                         | 4.0 | 32        |
| 100 | Dependence of the OH concentration on solar UV. Journal of Geophysical Research, 2000, 105, 3565-3571.                                                                                                                                       | 3.3 | 115       |
| 101 | Title is missing!. Journal of Atmospheric Chemistry, 1998, 31, 119-137.                                                                                                                                                                      | 3.2 | 42        |
| 102 | Study of ozone formation and transatlantic transport from biomass burning emissions over West<br>Africa during the airborne Tropospheric Ozone Campaigns TROPOZ I and TROPOZ II. Journal of<br>Geophysical Research, 1998, 103, 19059-19073. | 3.3 | 67        |
| 103 | On the use of hydrocarbons for the determination of tropospheric OH concentrations. Journal of Geophysical Research, 1998, 103, 18981-18997.                                                                                                 | 3.3 | 70        |
| 104 | Mixing Ratios and Photostationary State of NO and NO2 Observed During the POPCORN Field Campaign at a Rural Site in Germany. , 1998, , 119-137.                                                                                              |     | 3         |
| 105 | On the significance of regional trace gas distributions as derived from aircraft campaigns in PEM-West A and B. Journal of Geophysical Research, 1997, 102, 28333-28351.                                                                     | 3.3 | 9         |
| 106 | Tropospheric mixing ratios of NO obtained during TROPOZ II in the latitude region 67°N-56°S. Journal of Geophysical Research, 1997, 102, 25429-25449.                                                                                        | 3.3 | 15        |
| 107 | Estimations of global no, emissions and their uncertainties. Atmospheric Environment, 1997, 31, 1735-1749.                                                                                                                                   | 4.1 | 285       |
| 108 | The passive transport of NOx emissions from aircraft studied with a hierarchy of models.<br>Atmospheric Environment, 1997, 31, 1783-1799.                                                                                                    | 4.1 | 18        |

| #   | Article                                                                                                                                                                       | IF        | CITATIONS    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| 109 | Climatologies of NOxx and NOy: A comparison of data and models. Atmospheric Environment, 1997, 31, 1851-1904.                                                                 | 4.1       | 111          |
| 110 | The global tropospheric distribution of NOxestimated by a three-dimensional chemical tracer model.<br>Journal of Geophysical Research, 1996, 101, 18587-18604.                | 3.3       | 35           |
| 111 | Comparison of measured OH concentrations with model calculations. Journal of Geophysical Research, 1994, 99, 16633.                                                           | 3.3       | 58           |
| 112 | Global Measurements of Photochemically Active Compounds. , 1994, , 205-222.                                                                                                   |           | 4            |
| 113 | The Atmospheric Distribution of NO, O3, CO, and CH4 above the North Atlantic Based on the STRATOZ<br>III Flight. , 1993, , 171-187.                                           |           | 1            |
| 114 | Sources and distribution of NO <sub><i>x</i></sub> in the upper troposphere at northern<br>mid″atitudes. Journal of Geophysical Research, 1992, 97, 3725-3738.                | 3.3       | 145          |
| 115 | Surface NO and NO2 mixing ratios measured between 30� N and 30� S in the Atlantic region. Journal of Atmospheric Chemistry, 1992, 15, 253-267.                                | 3.2       | 28           |
| 116 | Electronic quenching of imidogen(c1.Pl.). The Journal of Physical Chemistry, 1989, 93, 7824-7832.                                                                             | 2.9       | 33           |
| 117 | Kinetic study of imidogen(a) by emission. The Journal of Physical Chemistry, 1989, 93, 3170-3174.                                                                             | 2.9       | 35           |
| 118 | The 193 (and 248) nm photolysis of HN3: Formation and internal energy distributions of the NH (a 1Δ,) Tj ET                                                                   | QqQ 0 0 r | 3BT /Overloc |
| 119 | Perturbations in UV Laser Photolysis Experiments: Blast Wave Formation. Zeitschrift Fur Physikalische<br>Chemie, 1988, 158, 131-146.                                          | 2.8       | 3            |
| 120 | Generation of NH(a 1Δ) in the 193 nm photolysis of ammonia. Journal of Chemical Physics, 1987, 86,<br>2036-2043.                                                              | 3.0       | 54           |
| 121 | Collisionâ€induced intersystem crossing NH(c 1Î)→NH(A 3Î). Journal of Chemical Physics, 1987, 86, 226                                                                         | -233.     | 27           |
| 122 | Two-photon formation of NH/ND(A3Î) in the 193 nm photolysis of ammonia. I. Mechanism and identification of the intermediate species. Chemical Physics, 1987, 118, 141-152.    | 1.9       | 34           |
| 123 | Hydroxyl(A) production in the 193-nm photolysis of nitrous acid. The Journal of Physical Chemistry, 1986, 90, 2635-2639.                                                      | 2.9       | 21           |
| 124 | Excitation mechanism for hydroxyl(A) in the argon fluoride excimer laser photolysis of nitric acid.<br>The Journal of Physical Chemistry, 1986, 90, 1294-1299.                | 2.9       | 33           |
| 125 | Determination of the excitation mechanism for photofragment emission in the ArF laser photolysis of NH3, N2H4, HNO3 and CH3NH2. Chemical Physics Letters, 1985, 116, 374-379. | 2.6       | 29           |
| 126 | Intelligent microcomputer interface for continuous registration and storage of spectra by photon counting. Review of Scientific Instruments, 1984, 55, 375-378.               | 1.3       | 6            |

|     | Fr                                                                                                 | Franz Rohrer |           |  |
|-----|----------------------------------------------------------------------------------------------------|--------------|-----------|--|
| #   | Article                                                                                            | IF           | CITATIONS |  |
| 127 | Radiative lifetime of metastable NH(b $1\hat{b}$ +). Chemical Physics Letters, 1984, 107, 347-350. | 2.6          | 28        |  |
|     |                                                                                                    |              |           |  |

NH(all<sup>°</sup> → X3l̂£â<sup>^</sup>) emission from the gas-phase photolysis of HN3. Chemical Physics Letters, 1984, 111, 234-2372.6 39