Debin Zhao

List of Publications by Citations

Source: https://exaly.com/author-pdf/8825265/debin-zhao-publications-by-citations.pdf

Version: 2024-04-05

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

187
papers3,887
citations32
h-index55
g-index227
ext. papers4,931
ext. citations4.6
avg, IF5.79
L-index

#	Paper	IF	Citations
187	Group-based sparse representation for image restoration. <i>IEEE Transactions on Image Processing</i> , 2014 , 23, 3336-51	8.7	395
186	Fast and robust text detection in images and video frames. <i>Image and Vision Computing</i> , 2005 , 23, 565-	57367	201
185	Learning Convolutional Networks for Content-Weighted Image Compression 2018,		125
184	Image Restoration Using Joint Statistical Modeling in a Space-Transform Domain. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2014 , 24, 915-928	6.4	108
183	. IEEE Transactions on Multimedia, 2007 , 9, 445-454	6.6	101
182	Image Compressive Sensing Recovery via Collaborative Sparsity. <i>IEEE Journal on Emerging and Selected Topics in Circuits and Systems</i> , 2012 , 2, 380-391	5.2	96
181	Image compressive sensing recovery using adaptively learned sparsifying basis via L0 minimization. <i>Signal Processing</i> , 2014 , 103, 114-126	4.4	88
180	Image interpolation via regularized local linear regression. <i>IEEE Transactions on Image Processing</i> , 2011 , 20, 3455-69	8.7	80
179	Progressive image denoising through hybrid graph Laplacian regularization: a unified framework. <i>IEEE Transactions on Image Processing</i> , 2014 , 23, 1491-503	8.7	79
178	An End-to-End Compression Framework Based on Convolutional Neural Networks. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2018 , 28, 3007-3018	6.4	79
177	Joint video/depth rate allocation for 3D video coding based on view synthesis distortion model. <i>Signal Processing: Image Communication</i> , 2009 , 24, 666-681	2.8	74
176	Rate-GOP Based Rate Control for High Efficiency Video Coding. <i>IEEE Journal on Selected Topics in Signal Processing</i> , 2013 , 7, 1101-1111	7.5	73
175	Random Walk Graph Laplacian-Based Smoothness Prior for Soft Decoding of JPEG Images. <i>IEEE Transactions on Image Processing</i> , 2017 , 26, 509-524	8.7	72
174	Large vocabulary sign language recognition based on fuzzy decision trees. <i>IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans</i> , 2004 , 34, 305-314		72
173	Image Compressed Sensing using Convolutional Neural Network. <i>IEEE Transactions on Image Processing</i> , 2019 ,	8.7	72
172	Object detection using spatial histogram features. <i>Image and Vision Computing</i> , 2006 , 24, 327-341	3.7	64
171	. IEEE Transactions on Multimedia, 2018 , 20, 379-391	6.6	62

170	Interpolation-dependent image downsampling. IEEE Transactions on Image Processing, 2011, 20, 3291-6	8.7	58
169	Multiple Hypotheses Bayesian Frame Rate Up-Conversion by Adaptive Fusion of Motion-Compensated Interpolations. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2012 , 22, 1188-1198	6.4	53
168	. IEEE Transactions on Multimedia, 2015 , 17, 2338-2344	6.6	51
167	Distributed Wireless Visual Communication With Power Distortion Optimization. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2013 , 23, 1040-1053	6.4	49
166	Deep networks for compressed image sensing 2017 ,		47
165	Wyner Ziv-Based Multiview Video Coding. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2008 , 18, 713-724	6.4	44
164	A Novel Rate Control Technique for Multiview Video Plus Depth Based 3D Video Coding. <i>IEEE Transactions on Broadcasting</i> , 2011 , 57, 562-571	4.7	43
163	No-reference perceptual image quality metric using gradient profiles for JPEG2000. <i>Signal Processing: Image Communication</i> , 2010 , 25, 502-516	2.8	43
162	. IEEE Transactions on Consumer Electronics, 2008, 54, 2037-2044	4.8	38
161	2019,		37
161 160	Depth Super-Resolution via Joint Color-Guided Internal and External Regularizations. <i>IEEE Transactions on Image Processing</i> , 2019 , 28, 1636-1645	8.7	37 35
	Depth Super-Resolution via Joint Color-Guided Internal and External Regularizations. <i>IEEE</i>	8.7	
160	Depth Super-Resolution via Joint Color-Guided Internal and External Regularizations. <i>IEEE Transactions on Image Processing</i> , 2019 , 28, 1636-1645 Data-Driven Soft Decoding of Compressed Images in Dual Transform-Pixel Domain. <i>IEEE</i>	·	35
160 159	Depth Super-Resolution via Joint Color-Guided Internal and External Regularizations. <i>IEEE Transactions on Image Processing</i> , 2019 , 28, 1636-1645 Data-Driven Soft Decoding of Compressed Images in Dual Transform-Pixel Domain. <i>IEEE Transactions on Image Processing</i> , 2016 , 25, 1649-59 Nonparametric background generation. <i>Journal of Visual Communication and Image Representation</i> ,	8.7	35
160 159 158	Depth Super-Resolution via Joint Color-Guided Internal and External Regularizations. <i>IEEE Transactions on Image Processing</i> , 2019 , 28, 1636-1645 Data-Driven Soft Decoding of Compressed Images in Dual Transform-Pixel Domain. <i>IEEE Transactions on Image Processing</i> , 2016 , 25, 1649-59 Nonparametric background generation. <i>Journal of Visual Communication and Image Representation</i> , 2007 , 18, 253-263 Single image super-resolution with dilated convolution based multi-scale information learning	8.7	35 34 34
160 159 158 157	Depth Super-Resolution via Joint Color-Guided Internal and External Regularizations. <i>IEEE Transactions on Image Processing</i> , 2019 , 28, 1636-1645 Data-Driven Soft Decoding of Compressed Images in Dual Transform-Pixel Domain. <i>IEEE Transactions on Image Processing</i> , 2016 , 25, 1649-59 Nonparametric background generation. <i>Journal of Visual Communication and Image Representation</i> , 2007 , 18, 253-263 Single image super-resolution with dilated convolution based multi-scale information learning inception module 2017 ,	2.7	35 34 34 33
160 159 158 157 156	Depth Super-Resolution via Joint Color-Guided Internal and External Regularizations. <i>IEEE Transactions on Image Processing</i> , 2019 , 28, 1636-1645 Data-Driven Soft Decoding of Compressed Images in Dual Transform-Pixel Domain. <i>IEEE Transactions on Image Processing</i> , 2016 , 25, 1649-59 Nonparametric background generation. <i>Journal of Visual Communication and Image Representation</i> , 2007 , 18, 253-263 Single image super-resolution with dilated convolution based multi-scale information learning inception module 2017 , . <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2018 , 28, 1346-1357	2.7	35 34 34 33 32

152	Stereoscopic video quality assessment based on visual attention and just-noticeable difference models. <i>Signal, Image and Video Processing</i> , 2016 , 10, 737-744	1.6	31	
151	Fast encoder decision for texture coding in 3D-HEVC. <i>Signal Processing: Image Communication</i> , 2014 , 29, 951-961	2.8	28	
150	Distributed Soft Video Broadcast (DCAST) with Explicit Motion 2012,		28	
149	A Spatio-Temporal Auto Regressive Model for Frame Rate Upconversion. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2009 , 19, 1289-1301	6.4	28	
148	Face recognition based on face-specific subspace. <i>International Journal of Imaging Systems and Technology</i> , 2003 , 13, 23-32	2.5	28	
147	Unsupervised Blind Image Quality Evaluation via Statistical Measurements of Structure, Naturalness, and Perception. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2020 , 30, 929-943	6.4	28	
146	Layered Soft Video Broadcast for Heterogeneous Receivers. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2015 , 25, 1801-1814	6.4	27	
145	Compressed Sensing Recovery via Collaborative Sparsity 2012,		27	
144	Compressive Sampling-Based Image Coding for Resource-Deficient Visual Communication. <i>IEEE Transactions on Image Processing</i> , 2016 , 25, 2844-2855	8.7	27	
143	Packet Video Error Concealment With Auto Regressive Model. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2012 , 22, 12-27	6.4	26	
142	Fast intra-encoding algorithm for High Efficiency Video Coding. <i>Signal Processing: Image Communication</i> , 2014 , 29, 935-944	2.8	25	
141	Dual Frame Motion Compensation With Optimal Long-Term Reference Frame Selection and Bit Allocation. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2010 , 20, 325-339	6.4	25	
140	Depth Restoration From RGB-D Data via Joint Adaptive Regularization and Thresholding on Manifolds. <i>IEEE Transactions on Image Processing</i> , 2019 , 28, 1068-1079	8.7	25	
139	. IEEE Transactions on Multimedia, 2018 , 20, 675-686	6.6	23	
138	Quality assessment for real out-of-focus blurred images. <i>Journal of Visual Communication and Image Representation</i> , 2017 , 46, 70-80	2.7	22	
137	3D object retrieval with multi-feature collaboration and bipartite graph matching. <i>Neurocomputing</i> , 2016 , 195, 40-49	5.4	21	
136	On Rate-Distortion Modeling and Extraction of H.264/SVC Fine-Granular Scalable Video. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2009 , 19, 323-336	6.4	21	
135	Convolutional Neural Networks Based Intra Prediction for HEVC 2017 ,		20	

134	Neural Network Based Inter Prediction for HEVC 2018,		20
133	Morphological representation of DCT coefficients for image compression. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2002 , 12, 819-823	6.4	18
132	. IEEE Transactions on Multimedia, 2020 , 22, 2024-2037	6.6	18
131	Learning discriminative features for fast frame-based action recognition. <i>Pattern Recognition</i> , 2013 , 46, 1832-1840	7.7	17
130	Inter-block consistent soft decoding of JPEG images with sparsity and graph-signal smoothness priors 2015 ,		17
129	A Novel Error Concealment Method for Stereoscopic Video Coding 2007,		17
128	Low-complexity and low-memory entropy coder for image compression. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2001 , 11, 1140-1145	6.4	17
127	Graph-Based Joint Dequantization and Contrast Enhancement of Poorly Lit JPEG Images. <i>IEEE Transactions on Image Processing</i> , 2019 , 28, 1205-1219	8.7	17
126	Spatially directional predictive coding for block-based compressive sensing of natural images 2013,		16
125	Exploiting Image Local and Nonlocal Consistency for Mixed Gaussian-Impulse Noise Removal 2012 ,		16
124	Statistical model, analysis and approximation of rate-distortion function in MPEG-4 FGS videos. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2006 , 16, 535-539	6.4	16
123	High-quality image restoration from partial random samples in spatial domain 2011,		15
122	Transition movement models for large vocabulary continuous sign language recognition		15
121	Adaptive relevance feedback based on Bayesian inference for image retrieval. <i>Signal Processing</i> , 2005 , 85, 395-399	4.4	15
120	Low complexity encoder optimization for HEVC. <i>Journal of Visual Communication and Image Representation</i> , 2016 , 35, 120-131	2.7	14
119	RD-optimized interactive streaming of multiview video with multiple encodings. <i>Journal of Visual Communication and Image Representation</i> , 2010 , 21, 523-532	2.7	14
118	3D visual saliency detection model with generated disparity map. <i>Multimedia Tools and Applications</i> , 2017 , 76, 3087-3103	2.5	13
117	Prior-Based Quantization Bin Matching for Cloud Storage of JPEG Images. <i>IEEE Transactions on Image Processing</i> , 2018 , 27, 3222-3235	8.7	13

116	Context-based entropy coding in AVS video coding standard. <i>Signal Processing: Image Communication</i> , 2009 , 24, 263-276	2.8	13
115	Hierarchical residual learning for image denoising. Signal Processing: Image Communication, 2019, 76, 243-251	2.8	12
114	Learning-based image restoration for compressed images. <i>Signal Processing: Image Communication</i> , 2012 , 27, 54-65	2.8	12
113	A Fast Inter Frame Prediction Algorithm for Multi-View Video Coding 2007,		12
112	Face hallucination and recognition in social network services. <i>Journal of Supercomputing</i> , 2015 , 71, 2035	-2.949	11
111	Viewpoint-independent hand gesture recognition with Kinect. <i>Signal, Image and Video Processing</i> , 2014 , 8, 163-172	1.6	11
110	Rate Control for Hierarchical B-picture Coding with Scaling-factors 2007 ,		11
109	Merge Mode for Deformable Block Motion Information Derivation. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2017 , 27, 2437-2449	6.4	10
108	. IEEE Transactions on Multimedia, 2018 , 20, 1622-1635	6.6	10
107	Side information generation with auto regressive model for low-delay distributed video coding. Journal of Visual Communication and Image Representation, 2012, 23, 229-236	2.7	10
106	Low-Complexity Encoder Framework for Window-Level Rate Control Optimization. <i>IEEE Transactions on Industrial Electronics</i> , 2013 , 60, 1850-1858	8.9	10
105	Structural Group Sparse Representation for Image Compressive Sensing Recovery 2013 ,		10
104	Quadratic Edomain based rate control algorithm for HEVC 2013 ,		10
103	Deinterlacing Using Hierarchical Motion Analysis. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2010 , 20, 673-686	6.4	10
102	Early Determination of Zero-Quantized 8 \$,times,\$8 DCT Coefficients. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2009 , 19, 1755-1765	6.4	10
101	Graph-Based Feature-Preserving Mesh Normal Filtering. <i>IEEE Transactions on Visualization and Computer Graphics</i> , 2021 , 27, 1937-1952	4	10
100	Perceptual image quality assessment combining free-energy principle and sparse representation 2016 ,		9
99	CG-Cast: Scalable Wireless Image SoftCast Using Compressive Gradient. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2019 , 29, 1832-1843	6.4	9

98	Stereoscopic video quality assessment based on stereo just-noticeable difference model 2013,		9
97	Synthetic data generation technique in Signer-independent sign language recognition. <i>Pattern Recognition Letters</i> , 2009 , 30, 513-524	4.7	9
96	. IEEE Transactions on Consumer Electronics, 2006 , 52, 888-895	4.8	9
95	Hierarchical frame based spatialEemporal recovery for video compressive sensing coding. <i>Neurocomputing</i> , 2016 , 174, 404-412	5.4	8
94	Sparsity-based soft decoding of compressed images in transform domain 2013,		8
93	Joint just noticeable difference model based on depth perception for stereoscopic images 2011 ,		8
92	Visual attention based image quality assessment 2011 ,		8
91	Wyner⊠iv Switching Scheme for Multiple Bit-Rate Video Streaming. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2008 , 18, 569-581	6.4	8
90	Block-Wise Adaptive Motion Accuracy Based B-Picture Coding With Low-Complexity Motion Compensation. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2007 , 17, 1085-1090	6.4	8
89	Image Primitive Coding and Visual Quality Assessment. Lecture Notes in Computer Science, 2012, 674-6	85 0.9	8
88	. IEEE Transactions on Circuits and Systems for Video Technology, 2020 , 1-1	6.4	8
87	Parallel In-Loop Filtering in HEVC Encoder on GPU. <i>IEEE Transactions on Consumer Electronics</i> , 2018 , 64, 276-284	4.8	8
86	Reduced reference stereoscopic image quality assessment based on entropy of classified primitives 2017 ,		7
85	Enhanced inter prediction with localized weighted prediction in HEVC 2015 ,		7
8 ₅			7
	Enhanced inter prediction with localized weighted prediction in HEVC 2015 ,	3.2	
84	Enhanced inter prediction with localized weighted prediction in HEVC 2015, Lagrange multiplier based perceptual optimization for high efficiency video coding 2014, Distributed Video Coding Based on the Human Visual System. IEEE Signal Processing Letters, 2009,	3.2	7

80	Face identification from a single example image based on Face-Specific Subspace (FSS) 2002,		7
79	. IEEE Transactions on Multimedia, 2020 , 22, 2307-2320	6.6	7
78	Group-based sparse representation for low lighting image enhancement 2016,		7
77	Video Compressed Sensing Using a Convolutional Neural Network. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2021 , 31, 425-438	6.4	7
76	Multi-Scale Deep Networks for Image Compressed Sensing 2018 ,		7
75	Optimal filter based on scale-invariance generation of natural images. <i>Journal of Supercomputing</i> , 2016 , 72, 5-23	2.5	6
74	. IEEE Transactions on Multimedia, 2017 , 19, 2404-2414	6.6	6
73	Motion vector refinement for frame rate up conversion on 3D video 2013 ,		6
72	New distortion model for depth coding in 3DVC 2012 ,		6
71	A ROI quality adjustable rate control scheme for low bitrate video coding 2009 ,		
,	A NOT quality adjustable rate control scheme for low bitrate video coding 2007,		6
70	A Spatio-Temporal Autoregressive Frame Rate Up Conversion Scheme. <i>Proceedings International Conference on Image Processing</i> , 2007 ,	1.6	6
	A Spatio-Temporal Autoregressive Frame Rate Up Conversion Scheme. <i>Proceedings International</i>	1.6	
70	A Spatio-Temporal Autoregressive Frame Rate Up Conversion Scheme. <i>Proceedings International Conference on Image Processing</i> , 2007 ,	2.5	6
7º 69	A Spatio-Temporal Autoregressive Frame Rate Up Conversion Scheme. <i>Proceedings International Conference on Image Processing</i> , 2007 , Fast multi reference frame motion estimation for high efficiency video coding 2013 , Game theory based no-reference perceptual quality assessment for stereoscopic images. <i>Journal of</i>		6
7° 69 68	A Spatio-Temporal Autoregressive Frame Rate Up Conversion Scheme. <i>Proceedings International Conference on Image Processing</i> , 2007 , Fast multi reference frame motion estimation for high efficiency video coding 2013 , Game theory based no-reference perceptual quality assessment for stereoscopic images. <i>Journal of Supercomputing</i> , 2015 , 71, 3337-3352 A Universal Rate Control Scheme for Video Transcoding. <i>IEEE Transactions on Circuits and Systems</i>	2.5	655
7° 69 68	A Spatio-Temporal Autoregressive Frame Rate Up Conversion Scheme. <i>Proceedings International Conference on Image Processing</i> , 2007 , Fast multi reference frame motion estimation for high efficiency video coding 2013 , Game theory based no-reference perceptual quality assessment for stereoscopic images. <i>Journal of Supercomputing</i> , 2015 , 71, 3337-3352 A Universal Rate Control Scheme for Video Transcoding. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2012 , 22, 489-501 A joint encoderBecoder error control framework for stereoscopic video coding. <i>Journal of Visual</i>	2.5	6555
70 69 68 67 66	A Spatio-Temporal Autoregressive Frame Rate Up Conversion Scheme. <i>Proceedings International Conference on Image Processing</i> , 2007, Fast multi reference frame motion estimation for high efficiency video coding 2013, Game theory based no-reference perceptual quality assessment for stereoscopic images. <i>Journal of Supercomputing</i> , 2015, 71, 3337-3352 A Universal Rate Control Scheme for Video Transcoding. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2012, 22, 489-501 A joint encoderdecoder error control framework for stereoscopic video coding. <i>Journal of Visual Communication and Image Representation</i> , 2010, 21, 975-985 Compressive Sensing Based Soft Video Broadcast Using Spatial and Temporal Sparsity. <i>Mobile</i>	2.5 6.4 2.7	6555

62	Multi-scale Spatial Error Concealment via Hybrid Bayesian Regression 2012,		4
61	Transductive Regression with Local and Global Consistency for Image Super-Resolution 2011,		4
60	Building Emerging Pattern (EP) Random forest for recognition 2010,		4
59	Witsenhausen Wyner Video Coding. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2011 , 21, 1049-1060	6.4	4
58	Localizing the iris center by region growing search		4
57	An enhanced entropy coding scheme for HEVC. Signal Processing: Image Communication, 2016, 44, 108-1	238	4
56	Big data driven decision making and multi-prior models collaboration for media restoration. <i>Multimedia Tools and Applications</i> , 2016 , 75, 12967-12982	2.5	3
55	HEVC compressed domain moving object detection and classfication 2016,		3
54	Sparsity-based joint gaze correction and face beautification for conferencing video 2015,		3
53	Distributed soft video broadcast with variable block size motion estimation 2013,		3
52	Spatial and temporal pyramid-based real-time gesture recognition. <i>Journal of Real-Time Image Processing</i> , 2017 , 13, 599-611	1.9	3
51	Compressed Vision Information Restoration Based on Cloud Prior and Local Prior. <i>IEEE Access</i> , 2014 , 2, 1117-1127	3.5	3
50	Optimal entropy-constrained non-uniform scalar quantizer design for low bit-rate pixel domain DVC. <i>Multimedia Tools and Applications</i> , 2014 , 70, 1799-1824	2.5	3
49	Robust Stereo Matching Combining SIFT Descriptor with NCC under MRF Framework 2010 ,		3
48	Image interpolation via regularized local linear regression 2010,		3
47	Background aided surveillance-oriented distributed video coding 2010 ,		3
46	Recognizing actions using salient features 2011 ,		3
45	Universal Steganalysis Based on Statistical Models Using Reorganization of Block-based DCT Coefficients 2009 ,		3

44	Arithmetic coding using hierarchical dependency context model for H.264/AVC video coding. <i>Multimedia Tools and Applications</i> , 2016 , 75, 7351-7370	2.5	2
43	Joint Gaze Correction and Face Beautification for Conference Video Using Dual Sparsity Prior. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 9601-9611	8.9	2
42	Multiple Description Image Coding with Local Random Measurements 2014,		2
41	Improved disparity vector derivation in 3D-HEVC 2013 ,		2
40	Rate control for consistent visual quality of H.264/AVC encoding. <i>Signal Processing: Image Communication</i> , 2013 , 28, 20-33	2.8	2
39	Region-of-interest based coding scheme for synthesized video 2015 ,		2
38	Spatial-temporal recovery for hierarchical frame based video compressed sensing 2015,		2
37	A fast intra optimization algorithm for HEVC 2014 ,		2
36	Simplified AMVP for High Efficiency Video Coding 2012 ,		2
35	Up-sampling Dependent Frame Rate Reduction for Low Bit-Rate Video Coding 2011 ,		2
34	Side information extrapolation with temporal and spatial consistency 2011,		2
33	High-quality image interpolation via local autoregressive and nonlocal 3-D sparse regularization 2012 ,		2
32	Direct Mode Coding for B Pictures using Virtual Reference Picture 2007,		2
31	Learning informative features for spatial histogram-based object detection		2
30	A Fast Intra Mode Decision Algorithm for AVS to H.264 Transcoding 2006,		2
29	Automatic moving object extraction in MPEG video		2
28	Context-based 2D-VLC for video coding		2
27	Video indexing by motion activity maps		2

26	Mesh Denoising with Local Guided Normal Filtering and Non-local Similarity. <i>Communications in Computer and Information Science</i> , 2017 , 176-184	0.3	2
25	An Efficient Deep Convolutional Laplacian Pyramid Architecture for Cs Reconstruction At Low Sampling Ratios 2018 ,		2
24	Model-based low bit-rate video coding for resource-deficient wireless visual communication. <i>Neurocomputing</i> , 2015 , 162, 180-190	5.4	1
23	Quad-tree based inter-view motion prediction 2015 ,		1
22	Multi-scale face hallucination based on frequency bands analysis 2013,		1
21	Progressive Image Restoration through Hybrid Graph Laplacian Regularization 2013,		1
20	Quality assessment for out-of-focus blurred images 2015,		1
19	Reference image based method of region of interest enhancement for haze image 2015,		1
18	Low bit-rate video coding via mode-dependent adaptive regression for wireless visual communications 2012 ,		1
17	Viewpoint-independent hand gesture recognition system 2012 ,		1
16	Estimation of end-to-end distortion of virtual view for error-resilient depth map coding 2013,		1
15	A parallel context model for level information in CABAC 2011 ,		1
14	Auto-regressive model based error concealment scheme for stereoscopic video coding 2011,		1
13	Fast disparity estimation utilizing depth information for multiview video coding 2011,		1
12	A high efficient error concealment scheme based on auto-regressive model for video coding 2009,		1
11	Effective algorithms for fast transcoding of AVS to H.264/AVC in the spatial domain. <i>Multimedia Tools and Applications</i> , 2007 , 35, 175-202	2.5	1
10	DSP Implementation of Deblocking Filter for AVS 2007 ,		1
9	Interacting multiple model particle filter to adaptive visual tracking		1

8	High-resolution Depth Maps Imaging via Attention-based Hierarchical Multi-modal Fusion. <i>IEEE Transactions on Image Processing</i> , 2021 , PP,	8.7	1
7	Neural Network-based Enhancement to Inter Prediction for Video Coding. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2021 , 1-1	6.4	1
6	Noise-Aware Super-Resolution of Depth Maps Via Graph-Based Plug-And-Play Framework 2018 ,		1
5	NormalNet: Learning-based Mesh Normal Denoising via Local Partition Normalization. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2021 , 1-1	6.4	1
4	Up-sampling oriented frame rate reduction. Signal Processing: Image Communication, 2013, 28, 254-266	2.8	0
3	Semisupervised learning-based depth estimation with semantic inference guidance. <i>Science China Technological Sciences</i> ,1	3.5	O
2	Corrections to A Spatio-Temporal Auto Regressive Model for Frame Rate Up-Conversion[[Sep 09 1289-1301]. IEEE Transactions on Circuits and Systems for Video Technology, 2010 , 20, 161-161	6.4	
1	FGS Coding Using Cycle-Based Leaky Prediction Through Multiple Leaky Factors. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2008 , 18, 1201-1211	6.4	