
Hideto Takami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8824625/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complete Genome Sequence of Enterohemorrhagic Eschelichia coli O157:H7 and Genomic Comparison with a Laboratory Strain K-12. DNA Research, 2001, 8, 11-22.	1.5	1,190
2	Comparative Metagenomics Revealed Commonly Enriched Gene Sets in Human Gut Microbiomes. DNA Research, 2007, 14, 169-181.	1,5	760
3	Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Research, 2000, 28, 4317-4331.	6.5	495
4	Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Research, 2011, 39, 3204-3223.	6.5	303
5	Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiology Letters, 2006, 152, 279-285.	0.7	251
6	Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. FEMS Microbiology Letters, 2001, 205, 291-297.	0.7	204
7	Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus. Nucleic Acids Research, 2004, 32, 6292-6303.	6.5	186
8	Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucleic Acids Research, 2002, 30, 3927-3935.	6.5	175
9	A Deeply Branching Thermophilic Bacterium with an Ancient Acetyl-CoA Pathway Dominates a Subsurface Ecosystem. PLoS ONE, 2012, 7, e30559.	1.1	161
10	Phage conversion of exfoliative toxin A production in Staphylococcus aureus. Molecular Microbiology, 2000, 38, 694-705.	1.2	146
11	Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria. Applied and Environmental Microbiology, 1997, 63, 2266-2272.	1.4	144
12	Production of extremely thermostable alkaline protease from Bacillus sp. no. AH-101. Applied Microbiology and Biotechnology, 1989, 30, 120.	1.7	139
13	Fungal diversity in deep-sea sediments – the presence of novel fungal groups. Fungal Ecology, 2010, 3, 316-325.	0.7	139
14	Complete Nucleotide Sequence of a Staphylococcus aureus Exfoliative Toxin B Plasmid and Identification of a Novel ADP-Ribosyltransferase, EDIN-C. Infection and Immunity, 2001, 69, 7760-7771.	1.0	127
15	An acid-tolerant ammonia-oxidizing \hat{i}^3 -proteobacterium from soil. ISME Journal, 2017, 11, 1130-1141.	4.4	123
16	Genetic and functional properties of uncultivated thermophilic crenarchaeotes from a subsurface gold mine as revealed by analysis of genome fragments. Environmental Microbiology, 2005, 7, 1967-1984.	1.8	119
17	Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 2309-2315.	0.8	105
18	Distribution and identification of red yeasts in deep-sea environments around the northwest Pacific Ocean. Antonie Van Leeuwenhoek, 2001, 80, 101-110.	0.7	99

HIDETO ΤΑΚΑΜΙ

#	Article	IF	CITATIONS
19	An Improved DNA Isolation Method for Metagenomic Analysis of the Microbial Flora of the Human Intestine. Microbes and Environments, 2007, 22, 214-222.	0.7	95
20	Biodiversity in deep-sea sites located near the south part of Japan. Extremophiles, 1999, 3, 97-102.	0.9	92
21	MAPLE 2.3.0: an improved system for evaluating the functionomes of genomes and metagenomes. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1515-1517.	0.6	80
22	Analysis of the genome of an alkaliphilic Bacillus strain from an industrial point of view. Extremophiles, 2000, 4, 99-108.	0.9	71
23	Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench. Extremophiles, 2004, 8, 351-356.	0.9	68
24	The Hadal Amphipod Hirondellea gigas Possessing a Unique Cellulase for Digesting Wooden Debris Buried in the Deepest Seafloor. PLoS ONE, 2012, 7, e42727.	1.1	67
25	An automated system for evaluation of the potential functionome: MAPLE version 2.1.0. DNA Research, 2016, 23, 467-475.	1.5	66
26	Evaluation method for the potential functionome harbored in the genome and metagenome. BMC Genomics, 2012, 13, 699.	1.2	65
27	Isolation and transposon mutagenesis of a Pseudomonas putida KT2442 toluene-resistant variant: involvement of an efflux system in solvent resistance. Extremophiles, 1998, 2, 395-400.	0.9	61
28	High frequency of phylogenetically diverse reductive dehalogenase-homologous genes in deep subseafloor sedimentary metagenomes. Frontiers in Microbiology, 2014, 5, 80.	1.5	61
29	Characterization of an alkaline protease from Bacillus sp. no. AH-101. Applied Microbiology and Biotechnology, 1990, 33, 519-23.	1.7	56
30	Degradation of Human Hair by a Thermostable Alkaline Protease from AlkaliphilicBacillussp. No. AH-101. Bioscience, Biotechnology and Biochemistry, 1992, 56, 1667-1669.	0.6	56
31	Reidentification of Facultatively AlkaliphilicBacillussp. C-125 toBacillus halodurans. Bioscience, Biotechnology and Biochemistry, 1999, 63, 943-945.	0.6	55
32	Characterization of a Novel Thermostable Carboxylesterase from <i>Geobacillus kaustophilus</i> HTA426 Shows the Existence of a New Carboxylesterase Family. Journal of Bacteriology, 2009, 191, 3076-3085.	1.0	50
33	Reidentification of the keratinase-producing facultatively alkaliphilic Bacillus sp. AH-101 as Bacillus halodurans. Extremophiles, 1999, 3, 293-296.	0.9	48
34	An improved physical and genetic map of the genome of alkaliphilic Bacillus sp. C-125. Extremophiles, 1999, 3, 21-28.	0.9	47
35	Outer Membrane Changes in a Toluene-Sensitive Mutant of Toluene-Tolerant <i>Pseudomonas putida</i> IH-2000. Journal of Bacteriology, 1999, 181, 4493-4498.	1.0	46
36	Bacterial Lifestyle in a Deep-sea Hydrothermal Vent Chimney Revealed by the Genome Sequence of the Thermophilic Bacterium Deferribacter desulfuricans SSM1. DNA Research, 2010, 17, 123-137.	1.5	41

HIDETO ΤΑΚΑΜΙ

#	Article	IF	CITATIONS
37	Novel Oxidatively Stable Subtilisin-like Serine Proteases from Alkaliphilic Bacillus spp.: Enzymatic Properties, Sequences, and Evolutionary Relationships. Biochemical and Biophysical Research Communications, 2000, 279, 313-319.	1.0	40
38	Bifidobacterium kashiwanohense sp. nov., isolated from healthy infant faeces. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 2610-2615.	0.8	40
39	An Automated System for Genome Analysis to Support Microbial Whole-genome Shotgun Sequencing. Bioscience, Biotechnology and Biochemistry, 2000, 64, 670-673.	0.6	38
40	Sharpea azabuensis gen. nov., sp. nov., a Gram-positive, strictly anaerobic bacterium isolated from the faeces of thoroughbred horses. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 2682-2686.	0.8	36
41	Effects of Hydrostatic Pressure and Temperature on Growth and Lipid Composition of the Inner Membrane of BarotolerantPseudomonassp. BT1 Isolated from the Deep-sea. Bioscience, Biotechnology and Biochemistry, 2000, 64, 72-79.	0.6	35
42	Role of Arginine Residues on the S4 Segment of the Bacillus halodurans Na+ Channel in Voltage-sensing. Journal of Membrane Biology, 2004, 201, 9-24.	1.0	35
43	Sequencing of three lambda clones from the genome of alkaliphilic Bacillus sp. strain C-125. Extremophiles, 1999, 3, 29-34.	0.9	33
44	Characterization of a New Rhamnogalacturonan Acetyl Esterase from Bacillus halodurans C-125 with a New Putative Carbohydrate Binding Domain. Journal of Bacteriology, 2008, 190, 1375-1382.	1.0	30
45	Lactobacillus hayakitensis sp. nov., isolated from intestines of healthy thoroughbreds. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 2836-2839.	0.8	30
46	Functional Classification of Uncultured "Candidatus Caldiarchaeum subterraneum―Using the Maple System. PLoS ONE, 2015, 10, e0132994.	1.1	29
47	Characterization of α-maltotetraohydrolase produced by Pseudomonas sp. MS300 isolated from the deepest site of the Mariana Trench. Extremophiles, 1998, 2, 401-407.	0.9	26
48	Identification and Distribution of New Insertion Sequences in the Genome of Alkaliphilic Bacillus halodurans C-125. Journal of Bacteriology, 2001, 183, 4345-4356.	1.0	26
49	Substrate Specificity of Thermostable Alkaline Protease from <i>Bacillus</i> sp. No. AH-101. Bioscience, Biotechnology and Biochemistry, 1992, 56, 333-334.	0.6	25
50	A globin-coupled oxygen sensor from the facultatively alkaliphilic Bacillus halodurans C-125. Extremophiles, 2001, 5, 351-354.	0.9	25
51	Characterization of Endo-β-N-acetylglucosaminidase from AlkaliphilicBacillus haloduransC-125. Bioscience, Biotechnology and Biochemistry, 2004, 68, 1059-1066.	0.6	25
52	<i>Lactobacillus hayakitensis</i> , <i>L. equigenerosi</i> and <i>L. equi</i> , predominant lactobacilli in the intestinal flora of healthy thoroughbreds. Animal Science Journal, 2009, 80, 339-346.	0.6	23
53	Branched fatty acids inhibit the biosynthesis of menaquinone in Helicobacter pylori. Journal of Antibiotics, 2011, 64, 151-153.	1.0	23
54	Molecular cloning, nucleotide sequence and expression of the structural gene for a thermostable alkaline protease from Bacillus sp. no. AH-101. Applied Microbiology and Biotechnology, 1992, 38, 101-8.	1.7	22

Hideto Takami

#	Article	IF	CITATIONS
55	Reidentification of facultatively alkaliphilic Bacillus firmus OF4 as Bacillus pseudofirmus OF4. Extremophiles, 2000, 4, 19-22.	0.9	22
56	Genetic analysis of the chromosome of alkaliphilic Bacillus halodurans C-125. Extremophiles, 1999, 3, 227-233.	0.9	21
57	An Alkali-Inducible Flotillin-like Protein fromBacillus haloduransC-125. Protein Journal, 2005, 24, 125-131.	0.7	21
58	Structural insights into the function of a thermostable copper-containing nitrite reductase. Journal of Biochemistry, 2014, 155, 123-135.	0.9	21
59	The physiological potential of anammox bacteria as revealed by their core genome structure. DNA Research, 2021, 28, .	1.5	21
60	Comprehensive Comparative Genomics and Phenotyping of Methylobacterium Species. Frontiers in Microbiology, 2021, 12, 740610.	1.5	20
61	The BH1999 Protein of Bacillus halodurans C-125 Is Gentisyl-Coenzyme A Thioesterase. Journal of Bacteriology, 2004, 186, 393-399.	1.0	19
62	Lactobacillus equicursoris sp. nov., isolated from the faeces of a thoroughbred racehorse. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 109-112.	0.8	19
63	Three inositol dehydrogenases involved in utilization and interconversion of inositol stereoisomers in a thermophile, Geobacillus kaustophilus HTA426. Microbiology (United Kingdom), 2012, 158, 1942-1952.	0.7	19
64	Characterization and structural modeling of a novel thermostable glycine oxidase from <i>Geobacillus kaustophilus</i> HTA426. Proteins: Structure, Function and Bioinformatics, 2008, 70, 1429-1441.	1.5	18
65	Molecular Cloning, Nucleotide Sequence, and Expression of the Structural Gene for Alkaline Serine Protease from AlkaliphilicBacillussp. 221. Bioscience, Biotechnology and Biochemistry, 1992, 56, 1455-1460.	0.6	17
66	Housekeeping recA gene interrupted by group II intron in the thermophilic Geobacillus kaustophilus. Gene, 2005, 363, 211-220.	1.0	17
67	Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiology Letters, 1997, 152, 279-285.	0.7	17
68	Sequence Analysis of a 32-kb Region Including the Major Ribosomal Protein Gene Clusters from AlkaliphilicBacillussp. Strain C-125. Bioscience, Biotechnology and Biochemistry, 1999, 63, 452-455.	0.6	16
69	Diversity of <i>Bradyrhizobium</i> in Non-Leguminous Sorghum Plants: <i>B. ottawaense</i> Isolates Unique in Genes for N ₂ O Reductase and Lack of the Type VI Secretion System. Microbes and Environments, 2020, 35, n/a.	0.7	16
70	Biochemical and Mutational Analysis of a Novel Nicotinamidase from Oceanobacillus iheyensis HTE831. PLoS ONE, 2013, 8, e56727.	1.1	16
71	d-Lactate electrochemical biosensor prepared by immobilization of thermostableÂdye-linked d-lactate dehydrogenase from Candidatus CaldiarchaeumÂsubterraneum. Journal of Bioscience and Bioengineering, 2018, 126, 425-430.	1.1	15
72	Characterization and comparative study of the rrn operons of alkaliphilic Bacillus halodurans C-125. Extremophiles, 2000, 4, 209-214.	0.9	14

Hideto Takami

#	Article	IF	CITATIONS
73	Structural and functional characterization of the Geobacillus copper nitrite reductase: Involvement of the unique N-terminal region in the interprotein electron transfer with its redox partner. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 396-405.	0.5	14
74	Isolation and Characterization of Microorganisms from Deep-Sea Mud. , 1999, , 3-26.		14
75	Active Bacterial Flora Surrounding Foraminifera (Xenophyophorea) Living on the Deep-Sea Floor. Bioscience, Biotechnology and Biochemistry, 2013, 77, 381-384.	0.6	13
76	lsolation of Extradiol Dioxygenase Genes That Are Phylogenetically Distant from Othermeta-Cleavage Dioxygenase Genes. Bioscience, Biotechnology and Biochemistry, 1997, 61, 530-532.	0.6	12
77	Complete genome sequence and expression profile of the commercial lytic enzyme producerLysobacter enzymogenesM497-1. DNA Research, 2017, 24, dsw055.	1.5	12
78	Isolation and characterization of toluene-sensitive mutants fromPseudomonas putidalH-2000. FEMS Microbiology Letters, 1998, 169, 219-225.	0.7	11
79	Replication Origin Region of the Chromosome of AlkaliphilicBacillus haloduransC-125. Bioscience, Biotechnology and Biochemistry, 1999, 63, 1134-1137.	0.6	11
80	Low frequency of endosporeâ€ s pecific genes in subseafloor sedimentary metagenomes. Environmental Microbiology Reports, 2015, 7, 341-350.	1.0	11
81	Polysaccharide hydrolase of the hadal zone amphipods <i>Hirondellea gigas</i> . Bioscience, Biotechnology and Biochemistry, 2018, 82, 1123-1133.	0.6	10
82	An aluminum shield enables the amphipod Hirondellea gigas to inhabit deep-sea environments. PLoS ONE, 2019, 14, e0206710.	1.1	10
83	Amylibacter kogurei sp. nov., a novel marine alphaproteobacterium isolated from the coastal sea surface microlayer of a marine inlet. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 2872-2877.	0.8	10
84	Cloning, expression, purification, crystallization and preliminary X-ray crystallographic study of GK0767, the copper-containing nitrite reductase from <i>Geobacillus kaustophilus</i> . Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 692-695.	0.7	9
85	Genomic Heterogeneity in a Natural Archaeal Population Suggests a Model of tRNA Gene Disruption. PLoS ONE, 2012, 7, e32504.	1.1	9
86	Classification of ascoideaceous yeasts based on the electrophoretic comparison of enzymes and coenzymes Q systems Journal of General and Applied Microbiology, 1986, 32, 271-282.	0.4	9
87	Identification and Distribution of New Insertion Sequences in the Genome of the Extremely Halotolerant and Alkaliphilic Oceanobacillus iheyensis HTE831. DNA Research, 2004, 11, 233-245.	1.5	8
88	New Insights into the Phylogeny and Molecular Classification of Nicotinamide Mononucleotide Deamidases. PLoS ONE, 2013, 8, e82705.	1.1	7
89	Wide-Range Distribution of Insertion Sequences Identified in B. halodurans among Bacilli and a New Transposon Disseminated in Alkaliphilic and Thermophilic Bacilli. DNA Research, 2004, 11, 153-162.	1.5	6
90	New Method for Comparative Functional Genomics and Metagenomics Using KEGG MODULE. , 2014, ,		6

1-15.

HIDETO ΤΑΚΑΜΙ

#	Article	IF	CITATIONS
91	Cloning and expression of the gene encoding RNA polymerase α subunit from alkaliphilicBacillussp. strain C-125. FEMS Microbiology Letters, 1998, 168, 269-276.	0.7	5
92	Alternative Splicing by Participation of the Group II Intron ORF in Extremely Halotolerant and Alkaliphilic Oceanobacillus iheyensis. Microbes and Environments, 2011, 26, 54-60.	0.7	4
93	Complete Genome Sequence of Altererythrobacter sp. Strain B11, an Aromatic Monomer-Degrading Bacterium, Isolated from Deep-Sea Sediment under the Seabed off Kashima, Japan. Genome Announcements, 2018, 6, .	0.8	4
94	MAPLE Enables Functional Assessment of Microbiota in Various Environments. , 2019, , 85-119.		4
95	Metabolic potential of the imperfect denitrifier <i>Candidatus</i> Desulfobacillus denitrificans in an anammox bioreactor. MicrobiologyOpen, 2021, 10, e1227.	1.2	4
96	Cloning, Expression, and Characterization of a Minor Alkaline Protease fromBacillussp. No. AH-101. Bioscience, Biotechnology and Biochemistry, 1992, 56, 510-511.	0.6	3
97	Cloning and expression of the gene encoding RNA polymerase α subunit from alkaliphilic Bacillus sp. strain C-125. FEMS Microbiology Letters, 1998, 168, 269-276.	0.7	3
98	Genomics and Evolution of Alkaliphilic Bacillus Species. , 2011, , 183-211.		3
99	Community structure and metabolic potentials of the traditional rice beer starter â€~emao'. Scientific Reports, 2021, 11, 14628.	1.6	3
100	Biochemical characterization of a new nicotinamidase from an unclassified bacterium thriving in a geothermal water stream microbial mat community. PLoS ONE, 2017, 12, e0181561.	1.1	2
101	Deep-sea, new resource for screening of biocatalysts. Studies in Organic Chemistry, 1998, 53, 259-263.	0.2	1
102	Genome Analysis of Facultatively Alkaliphilic Bacillus halodurans C-125. , 1999, , 249-284.		1
103	ç'°å¢f機èf½ã,²ãfŽãfŸã,¯ã,¹ç"ç©¶ã®åŸºç> 8 °ã³ã,‹ãf¡ã,¿ã,²ãfŽãf解枕 Kagaku To Seibutsu, 2007, 45, 330-3.	390.0	1
104	Unique substrate specificity of a thermostable glycosyl hydrolase from an uncultured Anaerolinea, derived from bacterial mat on a subsurface geothermal water stream. Biotechnology Letters, 2012, 34, 1887-1893.	1.1	1
105	Functional Microbial Diversity. , 2019, , 427-449.		1
106	Isolation and characterization of toluene-sensitive mutants from Pseudomonas putida IH-2000. , 0, .		1
107	I-2. Extreme environments from metagenomic point of view. Nippon Suisan Gakkaishi, 2011, 77, 248.	0.0	0