
Wojciech Ciesielski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/882448/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Arsenic(V) Removal from Water by Resin Impregnated with Cyclodextrin Ligand. Processes, 2022, 10, 253.	1.3	9
2	Polysaccharides Composite Materials as Carbon Nanoparticles Carrier. Polymers, 2022, 14, 948.	2.0	15
3	Specific Way of Controlling Composition of Cannabinoids and Essential Oil from Cannabis sativa var. Finola. Water (Switzerland), 2022, 14, 688.	1.2	1
4	Structural and enhanced hydrogen storage properties of the Li ₁₂ Mg ₃ Si ₃ Al phase. Acta Crystallographica Section C, Structural Chemistry, 2021, 77, 227-234.	0.2	1
5	Synthesis of New Amino—β-Cyclodextrin Polymer, Cross-Linked with Pyromellitic Dianhydride and Their Use for the Synthesis of Polymeric Cyclodextrin Based Nanoparticles. Polymers, 2021, 13, 1332.	2.0	5
6	Calixresorcin[4]arene-Mediated Transport of Pb(II) Ions through Polymer Inclusion Membrane. Membranes, 2021, 11, 285.	1.4	7
7	Cyclodextrins-Peptides/Proteins Conjugates: Synthesis, Properties and Applications. Polymers, 2021, 13, 1759.	2.0	14
8	A Facile and Efficient Bromination of Multi-Walled Carbon Nanotubes. Materials, 2021, 14, 3161.	1.3	8
9	Biodegradable Binary and Ternary Complexes from Renewable Raw Materials. Polymers, 2021, 13, 2925.	2.0	6
10	Enhancement of Y5â^'xPrxSb3â^'yMy (M = Sn, Pb) Electrodes for Lithium- and Sodium-Ion Batteries by Structure Disordering and CNTs Additives. Materials, 2021, 14, 4331.	1.3	0
11	Water of Increased Content of Molecular Oxygen. Water (Switzerland), 2020, 12, 2488.	1.2	9
12	Structure and Physicochemical Properties of Water Treated under Carbon Dioxide with Low-Temperature Low-Pressure Glow Plasma of Low Frequency. Water (Switzerland), 2020, 12, 1920.	1.2	13
13	CD Oxyanions as a Tool for Synthesis of Highly Anionic Cyclodextrin Polymers. Polymers, 2020, 12, 2845.	2.0	5
14	Reaction of Lavandula angustifolia Mill. to Water Treated with Low-Temperature, Low-Pressure Glow Plasma of Low Frequency. Water (Switzerland), 2020, 12, 3168.	1.2	7
15	Cultivation of Cress Involving Water Treated Under Different Atmospheres with Low-Temperature, Low-Pressure Glow Plasma of Low Frequency. Water (Switzerland), 2020, 12, 2152.	1.2	6
16	Biomedical Application of Cyclodextrin Polymers Cross-Linked via Dianhydrides of Carboxylic Acids. Applied Sciences (Switzerland), 2020, 10, 8463.	1.3	12
17	Effect of Watering of Selected Seasoning Herbs with Water Treated with Low-Temperature, Low-Pressure Glow Plasma of Low Frequency. Water (Switzerland), 2020, 12, 3526.	1.2	3
18	Specific Controlling Essential Oil Composition of Basil (Ocimum basilicum L.) Involving Low-Temperature, Low-Pressure Glow Plasma of Low Frequency. Water (Switzerland), 2020, 12, 3332.	1.2	8

WOJCIECH CIESIELSKI

#	Article	IF	CITATIONS
19	Structure and Physicochemical Properties of Water Treated under Nitrogen with Low-Temperature Glow Plasma. Water (Switzerland), 2020, 12, 1314.	1.2	16
20	Structure and Physicochemical Properties of Water Treated under Methane with Low-Temperature Glow Plasma of Low Frequency. Water (Switzerland), 2020, 12, 1638.	1.2	12
21	Critical study of crop-derived biochars for soil amendment and pharmaceutical ecotoxicity reduction. Chemosphere, 2020, 248, 125976.	4.2	11
22	Structure and some physicochemical and functional properties of water treated under ammonia with low-temperature low-pressure glow plasma of low frequency. Open Chemistry, 2020, 18, 1195-1206.	1.0	10
23	Can onium type derivatives with a stereogenic sulfur atom serve as chiral ionic liquids? A literature search. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 712-719.	0.8	1
24	Adsorptive removal of Pb(II) ions from aqueous solutions by multi-walled carbon nanotubes functionalised by selenophosphoryl groups: Kinetic, mechanism, and thermodynamic studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575, 271-282.	2.3	29
25	Valuable polar moieties on cereal-derived biochars. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 275-282.	2.3	7
26	Electrochemical hydrogenation of Mg76Li12Al12 solid solution phase. Ionics, 2019, 25, 2701-2709.	1.2	10
27	Starch–metal complexes and metal compounds. Journal of the Science of Food and Agriculture, 2018, 98, 2845-2856.	1.7	16
28	New quaternary carbide Mg _{1.52} Li _{0.24} Al _{0.24} C _{0.86} as a disorder derivative of the family of hexagonal close-packed (hcp) structures and the effect of structure modification on the electrochemical behaviour of the electrode. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 360-365.	0.2	9
29	Synthesis, characterization, and catalytic properties of the Li-doped ZnO. Journal of Thermal Analysis and Calorimetry, 2018, 134, 59-69.	2.0	2
30	CULTIVATION OF PEPPERMINT (Mentha piperita rubescens) USING WATER TREATED WITH LOW-PRESSURE, LOW-TEMPERATURE GLOW PLASMA OF LOW FREQUENCY. Electronic Journal of Polish Agricultural Universities, 2018, 21, .	0.1	7
31	Preparation and characteristics of mechanical and functional properties of starch/ <i>Plantago psyllium</i> seeds mucilage films. Starch/Staerke, 2017, 69, 1700014.	1.1	21
32	Physico-chemical and rheological properties of gelatinized/freeze-dried cereal starches. International Agrophysics, 2017, 31, 357-365.	0.7	7
33	A review of procedures of purification and chemical modification of carbon nanotubes with bromine. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 563-569.	1.0	18
34	Structure and Physicochemical Properties of Water Treated w ith Low-Temperature Low-Frequency Glow Plasma. Current Physical Chemistry, 2017, 6, 312-320.	0.1	25
35	The effect of the number of alkyl substituents on imidazolium ionic liquids phytotoxicity and oxidative stress in spring barley and common radish seedlings. Chemosphere, 2016, 165, 519-528.	4.2	32
36	Carbon nanotubes functionalized by salts containing stereogenic heteroatoms as electrodes in their battery cells. Polish Journal of Chemical Technology, 2016, 18, 22-26.	0.3	5

#	Article	IF	CITATIONS
37	Li ₄ Ge ₂ B as a new derivative of the Mo ₂ B ₅ and Li ₅ Sn ₂ structure types. Acta Crystallographica Section C, Structural Chemistry, 2016, 72, 561-565.	0.2	2
38	Carbon nanotubes functionalized with sulfur, selenium, or phosphorus or substituents containing these elements. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 541-547.	0.8	3
39	A stereogenic heteroatom-containing substituent as an inducer of chirality in the derivatives of thiophenes (mono, oligo, and poly), fullerenes C60, and multiwalled nanotubes. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 211-219.	0.8	2
40	Chromium substitution effect on structural and electrochemical behavior of Li-Cr-Ni-O oxides. Ionics, 2015, 21, 3039-3049.	1.2	3
41	Structure, rheological, textural and thermal properties of potato starch– Inulin gels. LWT - Food Science and Technology, 2015, 60, 131-136.	2.5	36
42	E Ffectiveness of Intrinsic Biodegradation Enhancement in Oil Hydrocarbons Contaminated Soil. Archives of Environmental Protection, 2014, 40, 101-113.	1.1	9
43	Structural and Thermal Characterization of the Incorporation of Lithium into ZnO. European Journal of Inorganic Chemistry, 2014, 2014, 925-931.	1.0	5
44	β-Cyclodextrin/protein conjugates as a innovative drug systems: synthesis and MS investigation. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 75, 293-296.	1.6	11
45	Triphenylmethanethiol as a Precursor for the Simultaneous Formation of Bis (Triphenylmethyl) Sulfide, Bis(Triphenylmethyl) Trisulfide, and Bis(Triphenylmethyl) Peroxide: Crystal Structures and Hirshfeld Surface Analyses. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 462-468.	0.8	2
46	Polymerization of \hat{l}^2 -cyclodextrin with succinic anhydride and thermogravimetric study of the polymers. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 69, 439-444.	1.6	9
47	Polymerization of $\hat{1}^2$ -cyclodextrin with maleic anhydride along with thermogravimetric study of polymers. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 69, 445-451.	1.6	12
48	Study of thermal stability of β-cyclodextrin/metal complexes in the aspect of their future applications. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 69, 461-467.	1.6	15
49	Starch–metal complexes and their rheology. E-Polymers, 2009, 9, .	1.3	3
50	Coordination of cassava starch to metal ions and thermolysis of resulting complexes . Bulletin of the Chemical Society of Ethiopia, 2004, 17, .	0.5	2
51	Werner-type metal complexes of potato starch. International Journal of Food Science and Technology, 2004, 39, 691-698.	1.3	18
52	Complexes of amylose and amylopectins with multivalent metal salts. Journal of Inorganic Biochemistry, 2004, 98, 2039-2051.	1.5	55
53	Thermal properties of complexes of amaranthus starch with selected metal salts. Thermochimica Acta, 2003, 403, 161-171.	1.2	35
54	Interactions of starch with salts of metals from the transition groups. Carbohydrate Polymers, 2003, 51, 47-56.	5.1	97

WOJCIECH CIESIELSKI

#	Article	IF	CITATIONS
55	Thermogravimetry- and differential scanning calorimetry-based studies of the solid state reactions of starch polysaccharides with proteogenic amino acids. Thermochimica Acta, 2001, 372, 119-128.	1.2	8
56	Starch Based Depressors for Selective Flotation of Metal Sulfide Ores. Starch/Staerke, 1999, 51, 416-421.	1.1	9
57	Starch radicals. European Food Research and Technology, 1998, 207, 292-298.	0.6	3
58	Starch radicals. European Food Research and Technology, 1998, 207, 299-303.	0.6	6
59	Starch radicals. Part II: Cereals—native starch complexes. Carbohydrate Polymers, 1997, 34, 303-308.	5.1	14
60	Starch radicals. Part I. Thermolysis of plain starch. Carbohydrate Polymers, 1996, 31, 205-210.	5.1	42
61	Towards recognizing the mechanisms of effects evoked in living organisms by static magnetic field. Numerically simulated effects of the static magnetic field upon simple inorganic molecules F1000Research, 0, 10, 611.	0.8	5
62	Potential risk resulting from the influence of static magnetic field upon living organisms. Numerically-simulated effects of the static magnetic field upon carbohydrates. BioRisk, 0, 18, 57-91.	0.2	2
63	Potential risk resulting from the influence of static magnetic field upon living organisms. Numerically simulated effects of the static magnetic field upon simple alkanols. BioRisk, 0, 18, 35-55.	0.2	3
64	Potential risk resulting from the influence of static magnetic field upon living organisms. Numerically simulated effects of the static magnetic field upon porphine. BioRisk, 0, 18, 93-104.	0.2	3