
Zed Rengel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8824388/publications.pdf Version: 2024-02-01

7ED RENCEI

#	Article	IF	CITATIONS
1	The role of calcium in salt toxicity. Plant, Cell and Environment, 1992, 15, 625-632.	2.8	417
2	Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytologist, 2005, 168, 305-312.	3.5	403
3	Crops and genotypes differ in efficiency of potassium uptake and use. Physiologia Plantarum, 2008, 133, 624-636.	2.6	364
4	Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Research, 1999, 60, 27-40.	2.3	357
5	Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis – model and research methods. Soil Biology and Biochemistry, 2011, 43, 883-894.	4.2	311
6	Phytomelatonin receptor <scp>PMTR</scp> 1â€mediated signaling regulates stomatal closure in <i>Arabidopsis thaliana</i> . Journal of Pineal Research, 2018, 65, e12500.	3.4	283
7	Cellular Mechanisms in Higher Plants Governing Tolerance to Cadmium Toxicity. Critical Reviews in Plant Sciences, 2014, 33, 374-391.	2.7	279
8	Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiology and Biochemistry, 2019, 141, 353-369.	2.8	246
9	Modelling root–soil interactions using three–dimensional models of root growth, architecture and function. Plant and Soil, 2013, 372, 93-124.	1.8	238
10	Role of dynamics of intracellular calcium in aluminiumâ€ŧoxicity syndrome. New Phytologist, 2003, 159, 295-314.	3.5	235
11	Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. Journal of Experimental Botany, 2013, 64, 2255-2268.	2.4	226
12	Role of magnesium in alleviation of aluminium toxicity in plants. Journal of Experimental Botany, 2011, 62, 2251-2264.	2.4	195
13	Direct Measurement of Aluminum Uptake and Distribution in Single Cells of Chara corallina1. Plant Physiology, 2000, 123, 987-996.	2.3	189
14	Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification. Field Crops Research, 2010, 119, 355-364.	2.3	187
15	Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regulation, 2015, 76, 25-40.	1.8	186
16	ls there an optimal root architecture for nitrate capture in leaching environments?. Plant, Cell and Environment, 2003, 26, 835-844.	2.8	178
17	Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize. New Phytologist, 2016, 209, 823-831.	3.5	159
18	Major Crop Species Show Differential Balance between Root Morphological and Physiological Responses to Variable Phosphorus Supply. Frontiers in Plant Science, 2016, 7, 1939.	1.7	143

#	Article	IF	CITATIONS
19	Genetic control of root exudation. Plant and Soil, 2002, 245, 59-70.	1.8	142
20	Exudation of carboxylates in Australian Proteaceae: chemical composition. Plant, Cell and Environment, 2001, 24, 891-904.	2.8	134
21	Responses of wheat and barley to liming on a sandy soil with subsoil acidity. Field Crops Research, 2003, 80, 235-244.	2.3	129
22	Biofortification and estimated human bioavailability of zinc in wheat grains as influenced by methods of zinc application. Plant and Soil, 2012, 361, 279-290.	1.8	129
23	Phosphorus uptake and rhizosphere properties of intercropped and monocropped maize, faba bean, and white lupin in acidic soil. Biology and Fertility of Soils, 2010, 46, 79-91.	2.3	121
24	Competitive Al ³⁺ Inhibition of Net Mg ²⁺ Uptake by Intact <i>Lolium multiflorum</i> Roots. Plant Physiology, 1989, 91, 1407-1413.	2.3	120
25	Distribution and remobilization of Zn and Mn during grain development in wheat. Journal of Experimental Botany, 1994, 45, 1829-1835.	2.4	115
26	Biogeochemistry of soil organic matter in agroecosystems & environmental implications. Science of the Total Environment, 2019, 658, 1559-1573.	3.9	114
27	Localized fertilization with P plus N elicits an ammonium-dependent enhancement of maize root growth and nutrient uptake. Field Crops Research, 2012, 133, 176-185.	2.3	110
28	Availability of Mn, Zn and Fe in the rhizosphere. Journal of Soil Science and Plant Nutrition, 2015, , 0-0.	1.7	107
29	The NPR1-dependent salicylic acid signalling pathway is pivotal for enhanced salt and oxidative stress tolerance in Arabidopsis. Journal of Experimental Botany, 2015, 66, 1865-1875.	2.4	105
30	Root morphological responses to localized nutrient supply differ among crop species with contrasting root traits. Plant and Soil, 2014, 376, 151-163.	1.8	101
31	Title is missing!. Plant and Soil, 1997, 196, 255-260.	1.8	98
32	Aluminium cycling in the soil-plant-animal-human continuum. BioMetals, 2004, 17, 669-689.	1.8	97
33	Role of phosphorus nutrition in development of cluster roots and release of carboxylates in soil-grown Lupinus albus. Plant and Soil, 2003, 248, 199-206.	1.8	95
34	Differential accumulation patterns of phosphorus and potassium by canola cultivars compared to wheat. Journal of Plant Nutrition and Soil Science, 2007, 170, 404-411.	1.1	93
35	Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants. Environmental Pollution, 2018, 233, 1003-1012.	3.7	93
36	Rhizosphere Properties of Poaceae Genotypes Under P-limiting Conditions. Plant and Soil, 2006, 283, 11-24.	1.8	92

#	Article	IF	CITATIONS
37	Biochars immobilize soil cadmium, but do not improve growth of emergent wetland species Juncus subsecundus in cadmium-contaminated soil. Journal of Soils and Sediments, 2013, 13, 140-151.	1.5	92
38	Simulating form and function of root systems: efficiency of nitrate uptake is dependent on root system architecture and the spatial and temporal variability of nitrate supply. Functional Ecology, 2004, 18, 204-211.	1.7	91
39	Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: Synthesis through meta-analysis. Environmental Pollution, 2010, 158, 855-861.	3.7	91
40	Wheat genotypes differ in potassium efficiency under glasshouse and field conditions. Australian Journal of Agricultural Research, 2007, 58, 816.	1.5	90
41	Maize responds to low shoot P concentration by altering root morphology rather than increasing root exudation. Plant and Soil, 2017, 416, 377-389.	1.8	90
42	Zinc fertilization and water stress affects plant water relations, stomatal conductance and osmotic adjustment in chickpea (Cicer arientinum L). Plant and Soil, 2004, 267, 271-284.	1.8	88
43	Phytoremediation potential of Juncus subsecundus in soils contaminated with cadmium and polynuclear aromatic hydrocarbons (PAHs). Geoderma, 2012, 175-176, 1-8.	2.3	87
44	Molecular and physiological strategies to increase aluminum resistance in plants. Molecular Biology Reports, 2012, 39, 2069-2079.	1.0	87
45	Zinc fertilisation increases grain zinc and reduces grain lead and cadmium concentrations more in zinc-biofortified than standard wheat cultivar. Science of the Total Environment, 2017, 605-606, 454-460.	3.9	86
46	Screening cereals for genotypic variation in efficiency of phosphorus uptake and utilisation. Australian Journal of Agricultural Research, 2002, 53, 295.	1.5	82
47	Breeding for better symbiosis. Plant and Soil, 2002, 245, 147-162.	1.8	82
48	Polynuclear aromatic hydrocarbons (PAHs) mediate cadmium toxicity to an emergent wetland species. Journal of Hazardous Materials, 2011, 189, 119-126.	6.5	82
49	Ammonium and Nitrate Uptake by the Floating Plant Landoltia punctata. Annals of Botany, 2007, 99, 365-370.	1.4	81
50	Daily rhythms of phytomelatonin signaling modulate diurnal stomatal closure via regulating reactive oxygen species dynamics in <i>Arabidopsis</i> . Journal of Pineal Research, 2020, 68, e12640.	3.4	81
51	Arsenic Speciation Governs Arsenic Uptake and Transport in Terrestrial Plants. Mikrochimica Acta, 2005, 151, 141-152.	2.5	80
52	Arsenic speciation in terrestrial plant material using microwave-assisted extraction, ion chromatography and inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2003, 18, 128-134.	1.6	78
53	Root architecture alteration of narrow-leafed lupin and wheat in response to soil compaction. Field Crops Research, 2014, 165, 61-70.	2.3	77
54	The Role of the Plasma Membrane H+-ATPase in Plant Responses to Aluminum Toxicity. Frontiers in Plant Science, 2017, 8, 1757.	1.7	77

#	Article	IF	CITATIONS
55	Environmental salinization processes: Detection, implications & solutions. Science of the Total Environment, 2021, 754, 142432.	3.9	77
56	Aluminumâ€induced plasma membrane surface potential and H + â€ATPase activity in nearâ€isogenic wheat lines differing in tolerance to aluminum. New Phytologist, 2004, 162, 71-79.	3.5	76
57	Localized application of NH4 +-N plus P at the seedling and later growth stages enhances nutrient uptake and maize yield by inducing lateral root proliferation. Plant and Soil, 2013, 372, 65-80.	1.8	76
58	Melatonin alleviates aluminium toxicity through modulating antioxidative enzymes and enhancing organic acid anion exudation in soybean. Functional Plant Biology, 2017, 44, 961.	1.1	76
59	Development of a novel semi-hydroponic phenotyping system for studying root architecture. Functional Plant Biology, 2011, 38, 355.	1.1	73
60	Magnesium alleviates plant toxicity of aluminium and heavy metals. Crop and Pasture Science, 2015, 66, 1298.	0.7	71
61	Aluminium-tolerant wheat uses more water and yields higher than aluminium-sensitive one on a sandy soil with subsurface acidity. Field Crops Research, 2002, 78, 93-103.	2.3	70
62	Beneficial Elements. , 2012, , 249-269.		70
63	Low-pH and Aluminum Resistance in Arabidopsis Correlates with High Cytosolic Magnesium Content and Increased Magnesium Uptake by Plant Roots. Plant and Cell Physiology, 2013, 54, 1093-1104.	1.5	69
64	Melatonin alleviates aluminum-induced root growth inhibition by interfering with nitric oxide production in Arabidopsis. Environmental and Experimental Botany, 2019, 161, 157-165.	2.0	68
65	Influence of plant species and submerged zone with carbon addition on nutrient removal in stormwater biofilter. Ecological Engineering, 2011, 37, 1833-1841.	1.6	67
66	Brassica genotypes differ in growth, phosphorus uptake and rhizosphere properties under P-limiting conditions. Soil Biology and Biochemistry, 2007, 39, 87-98.	4.2	66
67	Neighbouring plants modify maize root foraging for phosphorus: coupling nutrients and neighbours for improved nutrientâ€use efficiency. New Phytologist, 2020, 226, 244-253.	3.5	66
68	Zn fertilization improves water use efficiency, grain yield and seed Zn content in chickpea. Plant and Soil, 2003, 249, 389-400.	1.8	65
69	Interaction of veterinary antibiotic tetracyclines and copper on their fates in water and water hyacinth (Eichhornia crassipes). Journal of Hazardous Materials, 2014, 280, 389-398.	6.5	65
70	The effectiveness of deep placement of fertilisers is determined by crop species and edaphic conditions in Mediterranean-type environments: a review. Soil Research, 2009, 47, 19.	0.6	61
71	Arsenic uptake, translocation and speciation in pho1 and pho2 mutants of Arabidopsis thaliana. Physiologia Plantarum, 2004, 120, 280-286.	2.6	59
72	Microbial community composition and functioning in the rhizosphere of three Banksia species in native woodland in Western Australia. Applied Soil Ecology, 2005, 28, 191-201.	2.1	59

#	Article	IF	CITATIONS
73	Aluminium induces an increase in cytoplasmic calcium in intact wheat root apical cells. Functional Plant Biology, 1999, 26, 401.	1.1	56
74	Genotypic differences in wheat for uptake and utilisation of P from iron phosphate. Australian Journal of Agricultural Research, 2002, 53, 837.	1.5	56
75	Nutrient Removal from Simulated Wastewater Using Canna indica and Schoenoplectus validus in Mono- and Mixed-Culture in Wetland Microcosms. Water, Air, and Soil Pollution, 2007, 183, 95-105.	1.1	56
76	Humic acids decrease uptake and distribution of trace metals, but not the growth of radish exposed to cadmium toxicity. Ecotoxicology and Environmental Safety, 2018, 151, 55-61.	2.9	56
77	Competitive Al3+ Inhibition of Net Mg2+ Uptake by Intact Lolium multiflorum Roots. Plant Physiology, 1990, 93, 1261-1267.	2.3	55
78	Polynuclear aromatic hydrocarbons (PAHs) differentially influence growth of various emergent wetland species. Journal of Hazardous Materials, 2010, 182, 689-695.	6.5	54
79	Response of wheat genotypes efficient in P utilisation and genotypes responsive to P fertilisation to different P banding depths and watering regimes. Australian Journal of Agricultural Research, 2003, 54, 59.	1.5	54
80	Chickpea genotypes differ in their sensitivity to Zn deficiency. Plant and Soil, 1998, 198, 11-18.	1.8	53
81	Cadmium accumulation by muskmelon under salt stress in contaminated organic soil. Science of the Total Environment, 2009, 407, 2175-2182.	3.9	53
82	Cadmium Accumulation and Translocation in Four Emergent Wetland Species. Water, Air, and Soil Pollution, 2010, 212, 239-249.	1.1	53
83	Soil plant-available phosphorus levels and maize genotypes determine the phosphorus acquisition efficiency and contribution of mycorrhizal pathway. Plant and Soil, 2020, 449, 357-371.	1.8	52
84	Aluminium-induced ion transport in Arabidopsis: the relationship between Al tolerance and root ion flux. Journal of Experimental Botany, 2010, 61, 3163-3175.	2.4	51
85	Plant genotype, micronutrient fertilization and take-all infection influence bacterial populations in the rhizosphere of wheat. Plant and Soil, 1996, 183, 269-277.	1.8	50
86	COMPILATION OF SIMPLE SPECTROPHOTOMETRIC TECHNIQUES FOR THE DETERMINATION OF ELEMENTS IN NUTRIENT SOLUTIONS. Journal of Plant Nutrition, 2001, 24, 75-86.	0.9	48
87	Phenotypic variability and modelling of root structure of wild Lupinus angustifolius genotypes. Plant and Soil, 2011, 348, 345-364.	1.8	48
88	Assessing variability in root traits of wild Lupinus angustifolius germplasm: basis for modelling root system structure. Plant and Soil, 2012, 354, 141-155.	1.8	48
89	Plant genotype and micronutrient status influence colonization of wheat roots by soil bacteria. Journal of Plant Nutrition, 1998, 21, 99-113.	0.9	46
90	Auxin enhances aluminium-induced citrate exudation through upregulation of <i>GmMATE</i> and activation of the plasma membrane H ⁺ -ATPase in soybean roots. Annals of Botany, 2016, 118, 933-940.	1.4	46

#	Article	IF	CITATIONS
91	Longâ€ŧerm biochar application promotes rice productivity by regulating root dynamic development and reducing nitrogen leaching. GCB Bioenergy, 2021, 13, 257-268.	2.5	46
92	Membrane fluxes and comparative toxicities of aluminium, scandium and gallium. Journal of Experimental Botany, 1996, 47, 1881-1888.	2.4	45
93	Growth response to subsurface soil acidity of wheat genotypes differing in aluminium tolerance. Plant and Soil, 2001, 236, 1-10.	1.8	45
94	Canola genotypes differ in potassium efficiency during vegetative growth. Euphytica, 2007, 156, 387-397.	0.6	44
95	Increase in pH stimulates mineralization of â€~native' organic carbon and nitrogen in naturally salt-affected sandy soils. Plant and Soil, 2007, 290, 269-282.	1.8	43
96	Kinetics of ammonium, nitrate and phosphorus uptake by Canna indica and Schoenoplectus validus. Aquatic Botany, 2009, 91, 71-74.	0.8	43
97	Phosphorus starvation boosts carboxylate secretion in P-deficient genotypes of Lupinus angustifolius with contrasting root structure. Crop and Pasture Science, 2013, 64, 588.	0.7	43
98	Root-induced acidification and excess cation uptake by N2-fixing Lupinus albus grown in phosphorus-deficient soil. Plant and Soil, 2004, 260, 69-77.	1.8	42
99	Phosphate uptake in Arabidopsis thaliana : dependence of uptake on the expression of transporter genes and internal phosphate concentrations. Plant, Cell and Environment, 1999, 22, 1455-1461.	2.8	41
100	Manganese availability and microbial populations in the rhizosphere of wheat genotypes differing in tolerance to Mn deficiency. Journal of Plant Nutrition and Soil Science, 2003, 166, 712-718.	1.1	41
101	Soil Salinisation and Salt Stress in Crop Production. , 0, , .		41
102	Modelling root plasticity and response of narrow-leafed lupin to heterogeneous phosphorus supply. Plant and Soil, 2013, 372, 319-337.	1.8	40
103	Accumulation and distribution of arsenic and cadmium in winter wheat (Triticum aestivum L.) at different developmental stages. Science of the Total Environment, 2019, 667, 532-539.	3.9	39
104	Root length and root lipid composition contribute to drought tolerance of winter and spring wheat. Plant and Soil, 2019, 439, 57-73.	1.8	38
105	Uptake of zinc by rye, bread wheat and durum wheat cultivars differing in zinc efficiency. Plant and Soil, 1999, 209, 245-252.	1.8	37
106	Effects of soil physicochemical properties on microbial communities in different ecological niches in coastal area. Applied Soil Ecology, 2020, 150, 103486.	2.1	37
107	Melatonin functions in priming of stomatal immunity in <i>Panax notoginseng and Arabidopsis thaliana</i> . Plant Physiology, 2021, 187, 2837-2851.	2.3	37
108	Impact of nitrogen form on iron uptake and distribution in maize seedlings in solution culture. Plant and Soil, 2001, 235, 143-149.	1.8	35

#	Article	IF	CITATIONS
109	Influence of phenolic acids on phosphorus mobilisation in acidic and calcareous soils. Plant and Soil, 2005, 268, 173-180.	1.8	35
110	Aluminum-dependent dynamics of ion transport in Arabidopsis: specificity of low pH and aluminum responses. Physiologia Plantarum, 2010, 139, no-no.	2.6	35
111	Title is missing!. Plant and Soil, 2003, 249, 287-296.	1.8	34
112	Heterogeneous distribution of phosphorus and potassium in soil influences wheat growth and nutrient uptake. Plant and Soil, 2007, 291, 301-309.	1.8	34
113	Bauxite residue sand has the capacity to rapidly decrease availability of added manganese. Plant and Soil, 2001, 234, 143-151.	1.8	33
114	The root growth response to heterogeneous nitrate supply differs for Lupinus angustifolius and Lupinus pilosus. Australian Journal of Agricultural Research, 2001, 52, 495.	1.5	33
115	Title is missing!. Plant and Soil, 2003, 254, 349-360.	1.8	33
116	Uptake of aluminium into Arabidopsis root cells measured by fluorescent lifetime imaging. Annals of Botany, 2009, 104, 189-195.	1.4	33
117	Crop species differ in root plasticity response to localised P supply. Journal of Plant Nutrition and Soil Science, 2009, 172, 360-368.	1.1	33
118	Improved measurements of Na+ fluxes in plants using calixarene-based microelectrodes. Journal of Plant Physiology, 2011, 168, 1045-1051.	1.6	33
119	Remediation of heavy metal-contaminated iron ore tailings by applying compost and growing perennial ryegrass (Lolium perenne L.). Chemosphere, 2022, 288, 132573.	4.2	33
120	Growth and P uptake by wheat genotypes supplied with phytate as the only P source. Australian Journal of Agricultural Research, 2002, 53, 845.	1.5	32
121	Localized application of NH4+-N plus P enhances zinc and iron accumulation in maize via modifying root traits and rhizosphere processes. Field Crops Research, 2014, 164, 107-116.	2.3	32
122	Biomass bottom ash & dolomite similarly ameliorate an acidic low-nutrient soil, improve phytonutrition and growth, but increase Cd accumulation in radish. Science of the Total Environment, 2021, 753, 141902.	3.9	32
123	Transmembrane calcium fluxes during Al stress. Plant and Soil, 1995, 171, 125-130.	1.8	31
124	Spatial distribution of ammonium and nitrate fluxes along roots of wetland plants. Plant Science, 2007, 173, 240-246.	1.7	30
125	Interactive effects of nitrogen and phosphorus loadings on nutrient removal from simulated wastewater using Schoenoplectus validus in wetland microcosms. Chemosphere, 2008, 72, 1823-1828.	4.2	30
126	Salinity decreases dissolved organic carbon in the rhizosphere and increases trace element phytoâ€accumulation. European Journal of Soil Science, 2012, 63, 685-693.	1.8	29

#	Article	IF	CITATIONS
127	Combined effects of waterlogging and salinity on electrochemistry, water-soluble cations and water dispersible clay in soils with various salinity levels. Plant and Soil, 2004, 264, 231-245.	1.8	28
128	Mapping QTL associated with remobilization of zinc from vegetative tissues into grains of barley (Hordeum vulgare). Plant and Soil, 2016, 399, 193-208.	1.8	28
129	Zinc-biofortified wheat accumulates more cadmium in grains than standard wheat when grown on cadmium-contaminated soil regardless of soil and foliar zinc application. Science of the Total Environment, 2019, 654, 402-408.	3.9	28
130	Lupinus angustifolius has a plastic uptake response to heterogeneously supplied nitrate while Lupinus pilosus does not. Australian Journal of Agricultural Research, 2001, 52, 505.	1.5	28
131	Tolerance to ion toxicities enhances wheat (Triticum aestivum L.) grain yield in waterlogged acidic soils. Plant and Soil, 2012, 354, 371-381.	1.8	27
132	Arsenic and Heavy Metal (Cadmium, Lead, Mercury and Nickel) Contamination in Plant-Based Foods. , 2019, , 447-490.		27
133	Interactions of humates and chlorides with cadmium drive soil cadmium chemistry and uptake by radish cultivars. Science of the Total Environment, 2020, 702, 134887.	3.9	27
134	Aluminium Effects on Pollen Germination and Tube Growth of Chamelaucium uncinatum. A Comparison with Other Ca2+Antagonists. Annals of Botany, 1999, 84, 559-564.	1.4	26
135	Molecular marker linked to a chromosome region regulating seed Zn accumulation in barley. Molecular Breeding, 2010, 25, 167-177.	1.0	26
136	Zinc status and its requirement by rural adults consuming wheat from control or zinc-treated fields. Environmental Geochemistry and Health, 2020, 42, 1877-1892.	1.8	26
137	The niche complementarity driven by rhizosphere interactions enhances phosphorusâ€use efficiency in maize/alfalfa mixture. Food and Energy Security, 2020, 9, e252.	2.0	26
138	Ecotypes of Holcus lanatus Tolerant to Zinc Toxicity also Tolerate Zinc Deficiency. Annals of Botany, 2000, 86, 1119-1126.	1.4	25
139	Deep placement of manganese fertiliser improves sustainability of lucerne growing on bauxite residue: A glasshouse study. Plant and Soil, 2003, 257, 85-95.	1.8	24
140	Growth and resource allocation of Canna indica and Schoenoplectus validus as affected by interspecific competition and nutrient availability. Hydrobiologia, 2007, 589, 235-248.	1.0	24
141	Boron inhibits cadmium uptake in wheat (Triticum aestivum) by regulating gene expression. Plant Science, 2020, 297, 110522.	1.7	24
142	Soil phosphorus availability determines the preference for direct or mycorrhizal phosphorus uptake pathway in maize. Geoderma, 2021, 403, 115261.	2.3	24
143	Wheat genotypes differ in potassium accumulation and osmotic adjustment under drought stress. Crop and Pasture Science, 2011, 62, 550.	0.7	23
144	Zinc and cadmium mapping by NanoSIMS within the root apex after short-term exposure to metal contamination. Ecotoxicology and Environmental Safety, 2019, 171, 571-578.	2.9	23

#	Article	IF	CITATIONS
145	Phosphorus acquisition and wheat growth are influenced by shoot phosphorus status and soil phosphorus distribution in a split-root system. Journal of Plant Nutrition and Soil Science, 2008, 171, 266-271.	1.1	22
146	Interactive effects of N and P on growth but not on resource allocation of Canna indica in wetland microcosms. Aquatic Botany, 2008, 89, 317-323.	0.8	22
147	Wheat and white lupin differ in root proliferation and phosphorus use efficiency under heterogeneous soil P supply. Crop and Pasture Science, 2011, 62, 467.	0.7	22
148	Banding phosphorus and ammonium enhances nutrient uptake by maize via modifying root spatial distribution. Crop and Pasture Science, 2013, 64, 965.	0.7	22
149	Low arsenate influx rate and high phosphorus concentration in wheat (Triticum aestivum L.): A mechanism for arsenate tolerance in wheat plants. Chemosphere, 2019, 214, 94-102.	4.2	22
150	Root competition resulting from spatial variation in nutrient distribution elicits decreasing maize yield at high planting density. Plant and Soil, 2019, 439, 219-232.	1.8	22
151	Title is missing!. Plant and Soil, 1999, 215, 193-202.	1.8	21
152	Root Morphology, Proton Release, and Carboxylate Exudation in Lupin in Response to Phosphorus Deficiency. Journal of Plant Nutrition, 2008, 31, 557-570.	0.9	21
153	Root over-production in heterogeneous nutrient environment has no negative effects on Zea mays shoot growth in the field. Plant and Soil, 2016, 409, 405-417.	1.8	21
154	Title is missing!. Plant and Soil, 1997, 197, 271-280.	1.8	20
155	Mineral bioavailability in grains of Pakistani bread wheat declines from old to current cultivars. Euphytica, 2012, 186, 153-163.	0.6	20
156	Root trait diversity, molecular marker diversity, and trait-marker associations in a core collection of <i>Lupinus angustifolius</i> . Journal of Experimental Botany, 2016, 67, 3683-3697.	2.4	20
157	Magnesium promotes root growth and increases aluminum tolerance via modulation of nitric oxide production in Arabidopsis. Plant and Soil, 2020, 457, 83-95.	1.8	20
158	Growth and Element Uptake by Salt-Sensitive Crops under Combined NaCl and Cd Stresses. Plants, 2021, 10, 1202.	1.6	20
159	Response of chickpea genotypes to zinc fertilization under field conditions in south Australia and Pakistan. Journal of Plant Nutrition, 2000, 23, 1517-1531.	0.9	19
160	Biosynthesis of a 34-kDa Polypeptide in the Root-cell Plasma Membrane of a Zn-efficient Wheat Genotype Increases upon Zn Deficiency. Functional Plant Biology, 1997, 24, 307.	1.1	19
161	Efficient root systems forÂenhancing tolerance of cropsÂto water and phosphorus limitation. Indian Journal of Plant Physiology, 2018, 23, 689-696.	0.8	18
162	Zinc and Cadmium Mapping in the Apical Shoot and Hypocotyl Tissues of Radish by High-Resolution Secondary Ion Mass Spectrometry (NanoSIMS) after Short-Term Exposure to Metal Contamination. International Journal of Environmental Research and Public Health, 2019, 16, 373.	1.2	18

#	Article	IF	CITATIONS
163	Melatonin increases leaf disease resistance and saponin biosynthesis in Panax notogiseng. Journal of Plant Physiology, 2021, 263, 153466.	1.6	18
164	Global patterns of leaf construction traits and their covariation along climate and soil environmental gradients. New Phytologist, 2021, 232, 1648-1660.	3.5	18
165	Cycling of Micronutrients in Terrestrial Ecosystems. , 2007, , 93-121.		17
166	Wood biomass fly ash ameliorates acidic, low-nutrient hydromorphic soil & reduces metal accumulation in maize. Journal of Cleaner Production, 2021, 283, 124650.	4.6	17
167	Reactive Oxygen Species Production in Wheat Roots Is Not Linked with Changes in H ⁺ Fluxes During Acidic and Aluminium Stresses. Plant Signaling and Behavior, 2006, 1, 70-75.	1.2	16
168	A major QTL controlling the tolerance to manganese toxicity in barley (Hordeum vulgare L.). Molecular Breeding, 2018, 38, 1.	1.0	16
169	The Role of Soil Organic Matter in Trace Element Bioavailability and Toxicity. , 2012, , 403-423.		15
170	Phenotyping for Root Traits. , 2015, , 101-128.		15
171	Title is missing!. Nutrient Cycling in Agroecosystems, 2003, 65, 243-251.	1.1	14
172	Potassium starvation affects biomass partitioning and sink–source responses in three sweet potato genotypes with contrasting potassium-use efficiency. Crop and Pasture Science, 2018, 69, 506.	0.7	14
173	Growth and nutrient uptake of temperate perennial pastures are influenced by grass species and fertilisation with a microbial consortium inoculant. Journal of Plant Nutrition and Soil Science, 2020, 183, 530-538.	1.1	13
174	Magnesium reduces cadmium accumulation by decreasing the nitrate reductase-mediated nitric oxide production in Panax notoginseng roots. Journal of Plant Physiology, 2020, 248, 153131.	1.6	13
175	Phenotyping and Validation of Root Morphological Traits in Barley (Hordeum vulgare L.). Agronomy, 2021, 11, 1583.	1.3	13
176	CHELATOR EDTA IN NUTRIENT SOLUTION DECREASES GROWTH OF WHEAT. Journal of Plant Nutrition, 2002, 25, 1709-1725.	0.9	12
177	Differential nitrogen-use efficiency in wheat parents of doubled-haploid mapping populations. Plant and Soil, 2016, 408, 311-325.	1.8	12
178	Magnesium decreases aluminum accumulation and plays a role in protecting maize from aluminum-induced oxidative stress. Plant and Soil, 2020, 457, 71-81.	1.8	12
179	Phytomelatonin prevents bacterial invasion during nighttime. Trends in Plant Science, 2022, 27, 331-334.	4.3	12
180	Manganese uptake and transport in plants. Metal Ions in Biological Systems, 2000, 37, 57-87.	0.4	12

#	Article	IF	CITATIONS
181	Decreased capacity of takeâ€all fungus to oxidize manganous ions is associated with takeâ€all decline. Journal of Plant Nutrition, 1997, 20, 455-460.	0.9	11
182	DIFFERENTIAL CAPACITY OF WHEAT CULTIVARS AND WHITE LUPIN TO ACQUIRE PHOSPHORUS FROM ROCK PHOSPHATE, PHYTATE AND SOLUBLE PHOSPHORUS SOURCES. Journal of Plant Nutrition, 2012, 35, 1180-1191.	0.9	11
183	Early priority effects of occupying a nutrient patch do not influence final maize growth in intensive cropping systems. Plant and Soil, 2019, 442, 285-298.	1.8	11
184	Foliar application of magnesium mitigates soil acidity stress in wheat. Journal of Agronomy and Crop Science, 2021, 207, 378-389.	1.7	11
185	Deep banding of phosphorus and nitrogen enhances Rosa multiflora growth and nutrient accumulation by improving root spatial distribution. Scientia Horticulturae, 2021, 277, 109800.	1.7	11
186	Role of Potassium in Governing Photosynthetic Processes and Plant Yield. , 2018, , 191-203.		10
187	Specificity of Ion Uptake and Homeostasis Maintenance During Acid and Aluminium Stresses. Signaling and Communication in Plants, 2015, , 229-251.	0.5	10
188	Nitrogen Removal from Eutrophicated Water by Aquatic Plants. , 2010, , 355-372.		10
189	Humates and Chlorides Synergistically Increase Cd Phytoaccumulation in Strawberry Fruits, Heightening Health Risk from Cd in Human Diet. Exposure and Health, 2022, 14, 393-410.	2.8	10
190	Plant Acclimation and Adaptation to Natural and Anthropogenic Stress. Annals of the New York Academy of Sciences, 1998, 851, 216-223.	1.8	9
191	Removal of nutrients from secondary-treated municipal wastewater in wetland microcosms using ornamental plant species. International Journal of Environment and Waste Management, 2007, 1, 363.	0.2	9
192	Differential nitrogen supply causes large variability in photosynthetic traits in wheat germplasm. Crop and Pasture Science, 2017, 68, 703.	0.7	9
193	Co-Cropping Indian Mustard and Silage Maize for Phytoremediation of a Cadmium-Contaminated Acid Paddy Soil Amended with Peat. Toxics, 2021, 9, 91.	1.6	9
194	Microbial consortium inoculant increases pasture grasses yield in lowâ€phosphorus soil by influencing root morphology, rhizosphere carboxylate exudation and mycorrhizal colonisation. Journal of the Science of Food and Agriculture, 2022, 102, 540-549.	1.7	9
195	Plasticity and coâ€variation of root traits govern differential phosphorus acquisition among 20 wheat genotypes. Oikos, 2023, 2023, .	1.2	9
196	Industrial Hemp (Cannabis sativa L.) Varieties and Seed Pre-Treatments Affect Seed Germination and Early Growth of Seedlings. Agronomy, 2022, 12, 6.	1.3	9
197	Regulation of zinc and manganese transport into developing wheat grains having different zinc and manganese concentrations. Journal of Plant Nutrition, 1999, 22, 1141-1152.	0.9	8
198	Dynamics of Sodium in Saline and Sodic Soils. Communications in Soil Science and Plant Analysis, 2007, 38, 2077-2090.	0.6	8

#	Article	IF	CITATIONS
199	Bioashes and their potential for reuse to sustain ecosystem services and underpin circular economy. Renewable and Sustainable Energy Reviews, 2021, 151, 111540.	8.2	8
200	Dark secrets of phytomelatonin. Journal of Experimental Botany, 2022, 73, 5828-5839.	2.4	8
201	MODEL FOR OPTIMIZING FERTILIZATION OF SUGAR BEET, WHEAT, AND MAIZE GROWN ON PSEUDOGLEY SOILS. Journal of Plant Nutrition, 2002, 25, 1863-1879.	0.9	7
202	Applying foliar magnesium enhances wheat growth in acidic soil by stimulating exudation of malate and citrate. Plant and Soil, 2021, 464, 621.	1.8	7
203	Growth, Rhizosphere Carboxylate Exudation, and Arbuscular Mycorrhizal Colonisation in Temperate Perennial Pasture Grasses Varied with Phosphorus Application. Agronomy, 2020, 10, 2017.	1.3	7
204	Localized nutrient supply can facilitate root proliferation and increase nitrogen-use efficiency in compacted soil. Soil and Tillage Research, 2022, 215, 105198.	2.6	7
205	Ensuring future food security and resource sustainability: insights into the rhizosphere. IScience, 2022, 25, 104168.	1.9	7
206	Influence of plant species and submerged zone with carbon addition on the removal of metals by stormwater biofilters. Desalination and Water Treatment, 2014, 52, 4282-4291.	1.0	6
207	Genetic aluminium resistance coupled with foliar magnesium application enhances wheat growth in acidic soil. Journal of the Science of Food and Agriculture, 2021, 101, 4643-4652.	1.7	6
208	Longâ€ŧerm biochar application governs the molecular compositions and decomposition of organic matter in paddy soil. GCB Bioenergy, 0, , .	2.5	6
209	Potassium Use Efficiency of Plants. , 2021, , 119-145.		6
210	Ca2+Effects on K+Fluxes inArabidopsisSeedlings Exposed to Al3+. Soil Science and Plant Nutrition, 2005, 51, 733-736.	0.8	5
211	A quantitative size–density separation method to recover and characterise decomposing crop residues added to soil. Biology and Fertility of Soils, 2009, 45, 423-434.	2.3	5
212	Nitrogen and Potassium Fertilisation Influences Growth, Rhizosphere Carboxylate Exudation and Mycorrhizal Colonisation in Temperate Perennial Pasture Grasses. Agronomy, 2020, 10, 1878.	1.3	5
213	Expression of Genes Related to Plant Hormone Signal Transduction in Jerusalem Artichoke (Helianthus tuberosus L.) Seedlings under Salt Stress. Agronomy, 2022, 12, 163.	1.3	5
214	Effects of Soil Properties and Microbiome on Highbush Blueberry (Vaccinium corymbosum) Growth. Agronomy, 2022, 12, 1263.	1.3	5
215	Changes in soil - plant P under heterogeneous P supply influence C allocation between the shoot and roots. Functional Plant Biology, 2009, 36, 826.	1.1	3
216	Stomatal closure induced by hydrogen-rich water is dependent on GPA1 in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2022, 183, 72-75.	2.8	3

#	Article	IF	CITATIONS
217	Genetic Engineering and Molecular Strategies for Nutrient Manipulation in Plants. , 2017, , 405-441.		2
218	Response of wheat to the geometry and proximity of lime slotting in an acidic soil profile. Soil and Tillage Research, 2022, 217, 105269.	2.6	2
219	PROTOCOL: Agronomic biofortification strategies to increase grain zinc concentrations for improved nutritional quality of wheat, maize and rice: a systematic review. Campbell Systematic Reviews, 2017, 13, 1-16.	1.2	0