
Dor Amram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8824294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Grain boundary grooving in thin films revisited: The role of interface diffusion. Acta Materialia, 2014, 69, 386-396.	7.9	75
2	Anisotropic hole growth during solid-state dewetting of single-crystal Au–Fe thin films. Acta Materialia, 2012, 60, 3047-3056.	7.9	66
3	Solute interaction effects on grain boundary segregation in ternary alloys. Acta Materialia, 2018, 161, 285-294.	7.9	59
4	Interplay between thermodynamic and kinetic stabilization mechanisms in nanocrystalline Fe-Mg alloys. Acta Materialia, 2018, 144, 447-458.	7.9	55
5	Core(Fe)–Shell(Au) Nanoparticles Obtained from Thin Fe/Au Bilayers Employing Surface Segregation. ACS Nano, 2014, 8, 10687-10693.	14.6	45
6	Combinatorial study of thermal stability in ternary nanocrystalline alloys. Acta Materialia, 2020, 188, 40-48.	7.9	45
7	Solid state dewetting and stress relaxation in a thin single crystalline Ni film on sapphire. Acta Materialia, 2014, 74, 30-38.	7.9	38
8	Phase transformations in Au(Fe) nano- and microparticles obtained by solid state dewetting of thin Au–Fe bilayer films. Acta Materialia, 2013, 61, 5130-5143.	7.9	30
9	On the role of Fe in the growth of single crystalline heteroepitaxial Au thin films on sapphire. Acta Materialia, 2013, 61, 4113-4126.	7.9	27
10	Phenomenological Transition of an Aluminum Surface in an Ionic Liquid and Its Beneficial Implementation in Batteries. Langmuir, 2015, 31, 13860-13866.	3.5	21
11	Mechanical alloying produces grain boundary segregation in Fe–Mg powders. Scripta Materialia, 2020, 180, 57-61.	5.2	20
12	Kinetics of a retracting solid film edge: The case of high surface anisotropy. Scripta Materialia, 2011, 64, 962-965.	5.2	19
13	The α ↔ γ transformation in Fe and Fe–Au thin films, micro- and nanoparticles – an in situ study. Acta Materialia, 2015, 98, 343-354.	7.9	16
14	Higher Temperatures Yield Smaller Grains in a Thermally Stable Phase-Transforming Nanocrystalline Alloy. Physical Review Letters, 2018, 121, 145503.	7.8	16
15	Capillary-driven growth of metallic nanowires. Scripta Materialia, 2015, 109, 44-47.	5.2	15
16	Stability of ternary nanocrystalline alloys in the Pt–Pd–Au system. Materialia, 2019, 8, 100449.	2.7	14
17	Encapsulation by segregation – A multifaceted approach to gold segregation in iron particles on sapphire. Acta Materialia, 2016, 102, 342-351.	7.9	13
18	Phase Transformations in Au-Fe Particles and Thin Films: Size Effects at the Micro- and Nano-scales. Jom, 2016, 68, 1335-1342.	1.9	10

Dor Amram

#	Article	IF	CITATIONS
19	The kinetics of hollowing of Ag–Au core–shell nanowhiskers controlled by short-circuit diffusion. Acta Materialia, 2015, 82, 145-154.	7.9	6
20	Coherency strain reduction in particles on a substrate as a driving force for solute segregation. Scripta Materialia, 2016, 122, 89-92.	5.2	4
21	Reduction of nanowire diameter beyond lithography limits by controlled catalyst dewetting. Journal Physics D: Applied Physics, 2016, 49, 165309.	2.8	3