Gabriele R Lubach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8823191/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiomic profiling of iron-deficient infant monkeys reveals alterations in neurologically important biochemicals in serum and cerebrospinal fluid before the onset of anemia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 322, R486-R500.	1.8	10
2	Infantile Iron Deficiency Affects Brain Development in Monkeys Even After Treatment of Anemia. Frontiers in Human Neuroscience, 2021, 15, 624107.	2.0	9
3	Gut Microbial and Metabolic Profiling Reveal the Lingering Effects of Infantile Iron Deficiency Unless Treated with Iron. Molecular Nutrition and Food Research, 2021, 65, e2001018.	3.3	4
4	Correcting iron deficiency anemia with iron dextran alters the serum metabolomic profile of the infant Rhesus Monkey. American Journal of Clinical Nutrition, 2021, 113, 915-923.	4.7	13
5	General anaesthesia during infancy reduces white matter micro-organisation in developing rhesus monkeys. British Journal of Anaesthesia, 2021, 126, 845-853.	3.4	17
6	Lyticase Facilitates Mycobiome Resolution Without Disrupting Microbiome Fidelity in Primates. Journal of Surgical Research, 2021, 267, 336-341.	1.6	1
7	Maternal determinants of gestation length in the rhesus monkey. Trends in Developmental Biology, 2021, 14, 63.	1.0	2
8	Early-Life Iron Deficiency and Its Natural Resolution Are Associated with Altered Serum Metabolomic Profiles in Infant Rhesus Monkeys. Journal of Nutrition, 2020, 150, 685-693.	2.9	14
9	Feasibility of successfully breeding rhesus macaques (Macaca mulatta) to obtain healthy infants yearâ€round. American Journal of Primatology, 2020, 82, e23085.	1.7	7
10	Postcranial Skeletal Differences in Freeâ€Range and Captiveâ€Born Primates. Anatomical Record, 2019, 302, 761-774.	1.4	4
11	Metabolomic analysis of CSF indicates brain metabolic impairment precedes hematological indices of anemia in the iron-deficient infant monkey. Nutritional Neuroscience, 2018, 21, 40-48.	3.1	29
12	Low <i>Lactobacilli</i> abundance and polymicrobial diversity in the lower reproductive tract of female rhesus monkeys do not compromise their reproductive success. American Journal of Primatology, 2017, 79, e22691.	1.7	4
13	The UNC-Wisconsin Rhesus Macaque Neurodevelopment Database: A Structural MRI and DTI Database of Early Postnatal Development. Frontiers in Neuroscience, 2017, 11, 29.	2.8	45
14	A diffusion tensor MRI atlas of the postmortem rhesus macaque brain. NeuroImage, 2015, 117, 408-416.	4.2	169
15	A Novel Model for Brain Iron Uptake: Introducing the Concept of Regulation. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 48-57.	4.3	112
16	Hormones in infant rhesus monkeys' (Macaca mulatta) hair at birth provide a window into the fetal environment. Pediatric Research, 2014, 75, 476-481.	2.3	31
17	Population variation in neuroendocrine activity is associated with behavioral inhibition and hemispheric brain structure in young rhesus monkeys. Psychoneuroendocrinology, 2014, 47, 56-67.	2.7	8
18	Metabolomic Analysis of Cerebrospinal Fluid Indicates Iron Deficiency Compromises Cerebral Energy Metabolism in the Infant Monkey. Neurochemical Research, 2013, 38, 573-580.	3.3	28

GABRIELE R LUBACH

#	Article	IF	CITATIONS
19	Optimal iron fortification of maternal diet during pregnancy and nursing for investigating and preventing iron deficiency in young rhesus monkeys. Research in Veterinary Science, 2013, 94, 549-554.	1.9	16
20	Quantitative Proteomic Analyses of Cerebrospinal Fluid Using iTRAQ in a Primate Model of Iron Deficiency Anemia. Developmental Neuroscience, 2012, 34, 354-365.	2.0	29
21	A history of iron deficiency anemia during infancy alters brain monoamine activity later in juvenile monkeys. Developmental Psychobiology, 2009, 51, 301-309.	1.6	36
22	CSF proteomic analysis reveals persistent iron deficiencyâ€induced alterations in nonâ€human primate infants. Journal of Neurochemistry, 2008, 105, 127-136.	3.9	24
23	Selective Impairment of Cognitive Performance in the Young Monkey Following Recovery from Iron Deficiency. Journal of Developmental and Behavioral Pediatrics, 2008, 29, 11-17.	1.1	20
24	Preconception Maternal Iron Status Is a Risk Factor for Iron Deficiency in Infant Rhesus Monkeys (Macaca mulatta). Journal of Nutrition, 2006, 136, 2345-2349.	2.9	50
25	Prenatal Influences on Neuroimmune Set Points in Infancy. Annals of the New York Academy of Sciences, 2000, 917, 468-477.	3.8	51