Hideaki Fujita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8823131/publications.pdf

Version: 2024-02-01

		172457	1	89892
88	2,802 citations	29		50
papers	citations	h-index		g-index
91	91	91		3716
all docs	docs citations	times ranked		citing authors
3.22 340 00				<i>G</i> -:

#	Article	IF	CITATIONS
1	Recent advances in animal cell technologies for industrial and medical applications. Journal of Bioscience and Bioengineering, 2022, 133, 509-514.	2.2	3
2	Activation probability of a single naÃ⁻ve T cell upon TCR ligation is controlled by T cells interacting with the same antigenâ€presenting cell. FEBS Letters, 2021, 595, 1512-1524.	2.8	1
3	Effect of hydrogen peroxide concentration on the maintenance and differentiation of cultured skeletal muscle cells. Journal of Bioscience and Bioengineering, 2021, 131, 572-578.	2.2	9
4	Pressure-induced changes on the morphology and gene expression in mammalian cells. Biology Open, 2021, 10, .	1.2	4
5	Microarray profiling of gene expression in C2C12 myotubes trained by electric pulse stimulation. Journal of Bioscience and Bioengineering, 2021, 132, 417-422.	2.2	3
6	Clycine insertion modulates the fluorescence properties of <i>Aequorea victoria</i> green fluorescent protein and its variants in their ambient environment. Biophysics and Physicobiology, 2021, 18, 145-158.	1.0	1
7	Effect of cell-extracellular matrix interaction on myogenic characteristics and artificial skeletal muscle tissue. Journal of Bioscience and Bioengineering, 2020, 130, 98-105.	2.2	5
8	Use of Raman Spectrum from Cells to Evaluate Genetic Cardiomyopathy. Biophysical Journal, 2020, 118, 471a.	0.5	0
9	Linking substrate and nucleus via actin cytoskeleton in pluripotency maintenance of mouse embryonic stem cells. Stem Cell Research, 2019, 41, 101614.	0.7	16
10	Theoretical modeling reveals that regulatory T cells increase T-cell interaction with antigen-presenting cells for stable immune tolerance. International Immunology, 2019, 31, 743-753.	4.0	6
11	Eurotium Cristatum Fermented Okara as a Potential Food Ingredient to Combat Diabetes. Scientific Reports, 2019, 9, 17536.	3.3	26
12	Substrate rigidity-dependent positive feedback regulation between YAP and ROCK2. Cell Adhesion and Migration, 2018, 12, 00-00.	2.7	12
13	Raman spectral signature reflects transcriptomic features of antibiotic resistance in Escherichia coli. Communications Biology, 2018, 1, 85.	4.4	62
14	Cell type discrimination based on image features of molecular component distribution. Scientific Reports, 2018, 8, 11726.	3.3	8
15	Single cell analysis reveals a biophysical aspect of collective cell-state transition in embryonic stem cell differentiation. Scientific Reports, 2018, 8, 11965.	3.3	11
16	Bright Dots and Smart Optical Microscopy to Probe Intracellular Events in Single Cells. Frontiers in Bioengineering and Biotechnology, 2018, 6, 204.	4.1	4
17	Protein expression guided chemical profiling of living cells by the simultaneous observation of Raman scattering and anti-Stokes fluorescence emission. Scientific Reports, 2017, 7, 43569.	3.3	13
18	Design and fabrication of devices for investigating cell-sheet stretch. Biochip Journal, 2017, 11, 173-179.	4.9	3

#	Article	lF	Citations
19	A novel câ€6rc recruitment pathway from the cytosol to focal adhesions. FEBS Letters, 2017, 591, 1940-1946.	2.8	4
20	Raman spectroscopy as a tool for ecology and evolution. Journal of the Royal Society Interface, 2017, 14, 20170174.	3.4	14
21	The use of a genetically encoded molecular crowding sensor in various biological phenomena. Biophysics and Physicobiology, 2017, 14, 119-125.	1.0	10
22	Cell and Molecular Mechanics in Health and Disease. BioMed Research International, 2017, 2017, 1-2.	1.9	2
23	Substrate Stiffness Influences Doxorubicin-Induced p53 Activation via ROCK2 Expression. BioMed Research International, 2017, 2017, 1-10.	1.9	26
24	Non-label bioimaging utilizing scattering lights. , 2017, , .		0
25	Non-label immune cell state prediction using Raman spectroscopy. Scientific Reports, 2016, 6, 37562.	3.3	63
26	Dependence of fluorescent protein brightness on protein concentration in solution and enhancement of it. Scientific Reports, 2016, 6, 22342.	3.3	44
27	Design and development of genetically encoded fluorescent sensors to monitor intracellular chemical and physical parameters. Biophysical Reviews, 2016, 8, 121-138.	3.2	81
28	Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots. Biomedical Optics Express, 2016, 7, 2475.	2.9	8
29	Full control of polarization state with a pair of electro-optic modulators for polarization-resolved optical microscopy. Applied Optics, 2016, 55, 1082.	2.1	15
30	Comprehensive chemical secretory measurement of single cells trapped in a micro-droplet array with mass spectrometry. RSC Advances, 2015, 5, 16968-16971.	3.6	22
31	Visualizing the appearance and disappearance of the attractor of differentiation using Raman spectral imaging. Scientific Reports, 2015, 5, 11358.	3.3	19
32	<scp>SH</scp> 3 domain of câ€6rc governs its dynamics at focal adhesions and the cell membrane. FEBS Journal, 2015, 282, 4034-4055.	4.7	15
33	Particle Simulation of Oxidation Induced Band 3 Clustering in Human Erythrocytes. PLoS Computational Biology, 2015, 11, e1004210.	3.2	25
34	Gene dynamics of core transcription factors for pluripotency in embryonic stem cells. Journal of Bioscience and Bioengineering, 2015, 119, 406-409.	2.2	7
35	Fluid driving system for a micropump by differentiating iPS cells into cardiomyocytes on a tent-like structure. Sensors and Actuators B: Chemical, 2015, 210, 267-272.	7.8	22
36	Visualizing Cell State Transition Using Raman Spectroscopy. PLoS ONE, 2014, 9, e84478.	2.5	85

#	Article	IF	CITATIONS
37	Nano-scale measurement of biomolecules by optical microscopy and semiconductor nanoparticles. Frontiers in Physiology, 2014, 5, 273.	2.8	12
38	Culturing of mouse and human cells on soft substrates promote the expression of stem cell markers. Journal of Bioscience and Bioengineering, 2014, 117, 749-755.	2.2	32
39	Displacement of p130Cas from focal adhesions links actomyosin contraction to cell migration. Journal of Cell Science, 2014, 127, 3440-50.	2.0	22
40	2P307 Glycine-inserted mutant Forster resonance energy transfer (FRET) fluorescent protein to evaluate intracellular crowding (27. Bioimaging, Poster, The 52nd Annual Meeting of the Biophysical) Tj ETQq0 0 C)rg®LT/Ov∈	erloock 10 Tf 50
41	Induction of functional tissue-engineered skeletal muscle constructs by defined electrical stimulation. Scientific Reports, 2014, 4, 4781.	3.3	95
42	Displacement of p130Cas from focal adhesions links actomyosin contraction to cell migration. Development (Cambridge), 2014, 141, e1704-e1704.	2.5	0
43	Four-Dimensional Spatial Nanometry of Single Particles in Living Cells Using Polarized Quantum Rods. Biophysical Journal, 2013, 105, 555-564.	0.5	16
44	Metabolic flux analysis of genetically engineered Saccharomyces cerevisiae that produces lactate under micro-aerobic conditions. Bioprocess and Biosystems Engineering, 2013, 36, 1261-1265.	3.4	7
45	Heart extracellular matrix supports cardiomyocyte differentiation of mouse embryonic stem cells. Journal of Bioscience and Bioengineering, 2013, 115, 320-325.	2.2	50
46	Evaluation systems of generated forces of skeletal muscle cell-based bio-actuators. Journal of Bioscience and Bioengineering, 2013, 115, 115-121.	2.2	21
47	Fed-batch system for cultivating genetically engineered yeast that produces lactic acid via the fermentative promoter. Journal of Bioscience and Bioengineering, 2013, 115, 193-195.	2.2	3
48	3P289 Intracellular measurement of protein-crowding condition by a gene-encoded indicator(27.) Tj ETQq0 0 0 r	rgBT_/Over	lock 10 Tf 50
49	Glycine Insertion Makes Yellow Fluorescent Protein Sensitive to Hydrostatic Pressure. PLoS ONE, 2013, 8, e73212.	2.5	22
50	p130Cas-dependent actin remodelling regulates myogenic differentiation. Biochemical Journal, 2012, 445, 323-332.	3.7	24
51	Chromatin plasticity as a differentiation index during muscle differentiation of C2C12 myoblasts. Biochemical and Biophysical Research Communications, 2012, 418, 742-747.	2.1	6
52	Distinct Modulated Pupil Function System for Real-Time Imaging of Living Cells. PLoS ONE, 2012, 7, e44028.	2.5	0
53	Engineering strain-sensitive yellow fluorescent protein. Chemical Communications, 2012, 48, 7871.	4.1	17
54	Functional Evaluation of Artificial Skeletal Muscle Tissue Constructs Fabricated by a Magnetic Force-Based Tissue Engineering Technique. Tissue Engineering - Part A, 2011, 17, 107-114.	3.1	71

#	Article	IF	CITATIONS
55	Designing of a Si-MEMS device with an integrated skeletal muscle cell-based bio-actuator. Biomedical Microdevices, 2011, 13, 123-129.	2.8	35
56	Thin Filament-Reconstituted Skinned Muscle Fibers for the Study of Muscle Physiology. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-7.	3.0	1
57	Assembly of skeletal muscle cells on a Si-MEMS device and their generative force measurement. Biomedical Microdevices, 2010, 12, 247-252.	2.8	33
58	Rapid decrease in active tension generated by C2C12 myotubes after termination of artificial exercise. Journal of Muscle Research and Cell Motility, 2010, 31, 279-288.	2.0	15
59	Micropatterning of single myotubes on a thermoresponsive culture surface using elastic stencil membranes for single-cell analysis. Journal of Bioscience and Bioengineering, 2010, 109, 174-178.	2.2	29
60	Enhancement of C2C12 differentiation by perfluorocarbon-mediated oxygen delivery. Journal of Bioscience and Bioengineering, 2010, 110, 359-362.	2.2	11
61	Oxygen plasmaâ€treated thermoresponsive polymer surfaces for cell sheet engineering. Biotechnology and Bioengineering, 2010, 106, 303-310.	3.3	50
62	Novel method for measuring active tension generation by C2C12 myotube using UVâ€crosslinked collagen film. Biotechnology and Bioengineering, 2010, 106, 482-489.	3.3	29
63	Evaluation of serumâ€free differentiation conditions for C2C12 myoblast cells assessed as to active tension generation capability. Biotechnology and Bioengineering, 2010, 107, 894-901.	3.3	40
64	Fabrication of scaffold-free contractile skeletal muscle tissue using magnetite-incorporated myogenic C2C12 cells. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, n/a-n/a.	2.7	23
65	Identification of Three Distinct Functional Sites of Insulin-mediated GLUT4 Trafficking in Adipocytes Using Quantitative Single Molecule Imaging. Molecular Biology of the Cell, 2010, 21, 2721-2731.	2.1	52
66	Preparation of artificial skeletal muscle tissues by a magnetic force-based tissue engineering technique. Journal of Bioscience and Bioengineering, 2009, 108, 538-543.	2.2	88
67	Application of a cell sheet–polymer film complex with temperature sensitivity for increased mechanical strength and cell alignment capability. Biotechnology and Bioengineering, 2009, 103, 370-377.	3.3	34
68	Alignment of skeletal muscle myoblasts and myotubes using linear micropatterned surfaces ground with abrasives. Biotechnology and Bioengineering, 2009, 103, 631-638.	3.3	95
69	Novel method for fabrication of skeletal muscle construct from the C2C12 myoblast cell line using serumâ€free medium AlMâ€V. Biotechnology and Bioengineering, 2009, 103, 1034-1041.	3.3	36
70	Contractile C ₂ C ₁₂ myotube model for studying exercise-inducible responses in skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E1191-E1204.	3.5	198
71	Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes. Experimental Cell Research, 2007, 313, 1853-1865.	2.6	203
72	Auto-oscillations of Skinned Myocardium Correlating with Heartbeat. Journal of Muscle Research and Cell Motility, 2005, 26, 93-101.	2.0	31

#	Article	IF	CITATIONS
73	A New Muscle Contractile System Composed of a Thick Filament Lattice and a Single Actin Filament. Biophysical Journal, 2005, 89, 321-328.	0.5	21
74	Titin isoform-dependent effect of calcium on passive myocardial tension. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2528-H2534.	3.2	46
75	The effect of tropomyosin on force and elementary steps of the cross-bridge cycle in reconstituted bovine myocardium. Journal of Physiology, 2004, 556, 637-649.	2.9	28
76	Calcium-dependent molecular spring elements in the giant protein titin. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13716-13721.	7.1	352
77	Bio-Nanomuscle Project: Contractile Properties of Single Actin Filaments in an A-Band Motility Assay System. Advances in Experimental Medicine and Biology, 2003, 538, 103-110.	1.6	2
78	Elementary Steps of the Cross-Bridge Cycle in Bovine Myocardium with and without Regulatory Proteins. Biophysical Journal, 2002, 82, 915-928.	0.5	50
79	The Length of Cooperative Units on the Thin Filament in Rabbit Psoas Muscle Fibres. Experimental Physiology, 2002, 87, 691-697.	2.0	5
80	Temperature effect on isometric tension is mediated by regulatory proteins tropomyosin and troponin in bovine myocardium. Journal of Physiology, 2002, 539, 267-276.	2.9	28
81	Myosin light chain 2 modulates MgADPâ€induced contraction in rabbit skeletal and bovine cardiac skinned muscle. Journal of Physiology, 2002, 542, 221-229.	2.9	3
82	Tropomyosin Modulates pH Dependence of Isometric Tension. Biophysical Journal, 1999, 77, 1540-1546.	0.5	17
83	Regulatory roles of MgADP and calcium in tension development of skinned cardiac muscle. Journal of Muscle Research and Cell Motility, 1998, 19, 909-921.	2.0	44
84	Spontaneous Oscillatory Contraction without Regulatory Proteins in Actin Filament-Reconstituted Fibers. Biophysical Journal, 1998, 75, 1439-1445.	0.5	46
85	Contractile Properties of Thin (Actin) Filament-Reconstituted Muscle Fibers. Advances in Experimental Medicine and Biology, 1998, 453, 319-329.	1.6	8
86	Structural and functional reconstitution of thin filaments in the contractile apparatus of cardiac muscle. Biophysical Journal, 1996, 71, 2307-2318.	0.5	57
87	Spontaneous tension oscillation in skinned bovine cardiac muscle. Pflugers Archiv European Journal of Physiology, 1996, 433, 1-8.	2.8	39
88	Length Regulation of Thin Filaments without Nebulin Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1994, 70, 151-156.	3.8	5