Saravanan prabhu Nadarajan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8822968/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	ω-Transaminases for the Production of Optically Pure Amines and Unnatural Amino Acids. ACS Catalysis, 2012, 2, 993-1001.	5.5	264
2	Oxidoreductase-Catalyzed Synthesis of Chiral Amines. ACS Catalysis, 2018, 8, 10985-11015.	5.5	150
3	Recent Advances in ω-Transaminase-Mediated Biocatalysis for the Enantioselective Synthesis of Chiral Amines. Catalysts, 2018, 8, 254.	1.6	139
4	Unnatural amino acid mutagenesis-based enzyme engineering. Trends in Biotechnology, 2015, 33, 462-470.	4.9	66
5	Biochemical characterization of thermostable ω-transaminase from Sphaerobacter thermophilus and its application for producing aromatic β- and γ-amino acids. Enzyme and Microbial Technology, 2016, 87-88, 52-60.	1.6	64
6	Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chemical Reviews, 2021, 121, 6173-6245.	23.0	62
7	Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ω-hydroxy fatty acids in engineered Saccharomyces cerevisiae. Microbial Cell Factories, 2015, 14, 45.	1.9	56
8	Bioconjugation of <scp>l</scp> -3,4-Dihydroxyphenylalanine Containing Protein with a Polysaccharide. Bioconjugate Chemistry, 2011, 22, 551-555.	1.8	49
9	Incorporating unnatural amino acids to engineer biocatalysts for industrial bioprocess applications. Biotechnology Journal, 2015, 10, 1862-1876.	1.8	43
10	Deracemization of Racemic Amines to Enantiopure (<i>R</i>)―and (<i>S</i>)â€amines by Biocatalytic Cascade Employing ï‰â€Transaminase and Amine Dehydrogenase. ChemCatChem, 2019, 11, 1898-1902.	1.8	42
11	Enhancing Thermostability and Organic Solvent Tolerance of ï‰â€Transaminase through Global Incorporation of Fluorotyrosine. Advanced Synthesis and Catalysis, 2014, 356, 993-998.	2.1	40
12	Engineering Transaminase for Stability Enhancement and Siteâ€6pecific Immobilization through Multiple Noncanonical Amino Acids Incorporation. ChemCatChem, 2015, 7, 417-421.	1.8	40
13	Parallel anti-sense two-step cascade for alcohol amination leading to ω-amino fatty acids and α,ω-diamines. Green Chemistry, 2018, 20, 4591-4595.	4.6	38
14	Biosynthesis of Medium- to Long-Chain α,ï‰-Diols from Free Fatty Acids Using CYP153A Monooxygenase, Carboxylic Acid Reductase, and E. coli Endogenous Aldehyde Reductases. Catalysts, 2018, 8, 4.	1.6	35
15	Enzymatic synthesis of sitagliptin intermediate using a novel ï‰-transaminase. Enzyme and Microbial Technology, 2019, 120, 52-60.	1.6	34
16	Production of chiral β-amino acids using ω-transaminase from Burkholderia graminis. Journal of Biotechnology, 2015, 196-197, 1-8.	1.9	33
17	Biosynthesis of the Nylon 12 Monomer, ωâ€Aminododecanoic Acid with Novel CYP153A, AlkJ, and ωâ€₹A Enzymes. Biotechnology Journal, 2018, 13, e1700562.	1.8	33
18	A New-Generation Fluorescent-Based Metal Sensor – iLOV Protein. Journal of Microbiology and Biotechnology, 2015, 25, 503-510.	0.9	25

#	Article	IF	CITATIONS
19	A facile and efficient method for the incorporation of multiple unnatural amino acids into a single protein. Chemical Communications, 2011, 47, 3430.	2.2	24
20	Biotransformation of β-keto nitriles to chiral (S)-β-amino acids using nitrilase and ω-transaminase. Biotechnology Letters, 2017, 39, 535-543.	1.1	24
21	Engineering an FMN-based iLOV protein for the detection of arsenic ions. Analytical Biochemistry, 2017, 525, 38-43.	1.1	22
22	FMN-Based Fluorescent Proteins as Heavy Metal Sensors Against Mercury Ions. Journal of Microbiology and Biotechnology, 2016, 26, 530-539.	0.9	21
23	Construction of a high efficiency copper adsorption bacterial system via peptide display and its application on copper dye polluted wastewater. Bioprocess and Biosystems Engineering, 2015, 38, 2077-2084.	1.7	20
24	An Integrated Cofactor/Coâ€Product Recycling Cascade for the Biosynthesis of Nylon Monomers from Cycloalkylamines. Angewandte Chemie - International Edition, 2021, 60, 3481-3486.	7.2	19
25	One-pot biocatalytic synthesis of nylon monomers from cyclohexanol using <i>Escherichia coli</i> -based concurrent cascade consortia. Green Chemistry, 2021, 23, 9447-9453.	4.6	19
26	Enhancing the biophysical properties of mRFP1 through incorporation of fluoroproline. Biochemical and Biophysical Research Communications, 2013, 440, 509-514.	1.0	18
27	Biosynthetic substitution of tyrosine in green fluorescent protein with its surrogate fluorotyrosine in Escherichia coli. Biotechnology Letters, 2011, 33, 2201-2207.	1.1	17
28	Temperature sensing using red fluorescent protein. Biotechnology and Bioprocess Engineering, 2015, 20, 67-72.	1.4	17
29	Multi-enzymatic cascade reactions with <i>Escherichia coli</i> -based modules for synthesizing various bioplastic monomers from fatty acid methyl esters. Green Chemistry, 2022, 24, 2222-2231.	4.6	17
30	Manganese and cobalt recovery by surface display of metal binding peptide on various loops of OmpC in <i>Escherichia coli</i> . Journal of Industrial Microbiology and Biotechnology, 2018, 45, 31-41.	1.4	16
31	Glutamate as an Efficient Amine Donor for the Synthesis of Chiral β―and γâ€Amino Acids Using Transaminase. ChemCatChem, 2019, 11, 1437-1440.	1.8	16
32	Kinetic Resolution of Racemic Amines to Enantiopure (S)-amines by a Biocatalytic Cascade Employing Amine Dehydrogenase and Alanine Dehydrogenase. Catalysts, 2019, 9, 600.	1.6	15
33	Evaluation and biosynthetic incorporation of chlorotyrosine into recombinant proteins. Biotechnology and Bioprocess Engineering, 2012, 17, 679-686.	1.4	14
34	Protein engineering for covalent immobilization and enhanced stability through incorporation of multiple noncanonical amino acids. Biotechnology and Bioprocess Engineering, 2017, 22, 248-255.	1.4	14
35	Engineering lead-sensing GFP through rational designing. Chemical Communications, 2014, 50, 15979-15982.	2.2	13
36	Bacterial synthesis of four hydroxycinnamic acids. Applied Biological Chemistry, 2016, 59, 173-179.	0.7	12

#	Article	IF	CITATIONS
37	Evaluating the role of puckering and fluorine atom in stability and folding of fluoroproline containing proteins. Biotechnology and Bioprocess Engineering, 2017, 22, 504-511.	1.4	9
38	<i>In vivo</i> biosynthesis of tyrosine analogs and their concurrent incorporation into a residue-specific manner for enzyme engineering. Chemical Communications, 2019, 55, 15133-15136.	2.2	9
39	Synthesis of Sitagliptin Intermediate by a Multi-Enzymatic Cascade System Using Lipase and Transaminase With Benzylamine as an Amino Donor. Frontiers in Bioengineering and Biotechnology, 2021, 9, 757062.	2.0	9
40	Non-Canonical Amino Acid-Based Engineering of (R)-Amine Transaminase. Frontiers in Chemistry, 2022, 10, 839636.	1.8	9
41	Rewriting the Metabolic Blueprint: Advances in Pathway Diversification in Microorganisms. Frontiers in Microbiology, 2018, 9, 155.	1.5	8
42	Enzymatic Synthesis of Aliphatic Primary ω-Amino Alcohols from ω-Amino Fatty Acids by Carboxylic Acid Reductase. Catalysis Letters, 2020, 150, 3079-3085.	1.4	8
43	An in silico approach to evaluate the polyspecificity of methionyl-tRNA synthetases. Journal of Molecular Graphics and Modelling, 2013, 39, 79-86.	1.3	6
44	An Integrated Cofactor/Coâ€Product Recycling Cascade for the Biosynthesis of Nylon Monomers from Cycloalkylamines. Angewandte Chemie, 2021, 133, 3523-3528.	1.6	6