
Julien De Winter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8822637/publications.pdf Version: 2024-02-01

IIIIIEN DE WINTED

#	Article	IF	CITATIONS
1	Non-Isocyanate Polyurethanes from Carbonated Soybean Oil Using Monomeric or Oligomeric Diamines To Achieve Thermosets or Thermoplastics. Macromolecules, 2016, 49, 2162-2171.	2.2	185
2	Incorporation of Different End Groups in Conjugated Polymers Using Functional Nickel Initiators. Macromolecules, 2009, 42, 7638-7641.	2.2	122
3	An artificial molecular machine that builds an asymmetric catalyst. Nature Nanotechnology, 2018, 13, 381-385.	15.6	108
4	Cyclic Polymers by Ringâ€Closure Strategies. Angewandte Chemie - International Edition, 2016, 55, 13944-13958.	7.2	102
5	End Group-Functionalization and Synthesis of Block-Copolythiophenes by Modified Nickel Initiators. Macromolecules, 2011, 44, 6017-6025.	2.2	69
6	Influence of Chain Topology (Cyclic versus Linear) on the Nucleation and Isothermal Crystallization of Poly(<scp>l</scp> -lactide) and Poly(<scp>d</scp> -lactide). Macromolecules, 2018, 51, 1718-1732.	2.2	68
7	Cyclic polymers: Advances in their synthesis, properties, and biomedical applications. Journal of Polymer Science, 2020, 58, 1481-1502.	2.0	67
8	Design of Multistimuli-Responsive Shape-Memory Polymer Materials by Reactive Extrusion. Chemistry of Materials, 2014, 26, 5860-5867.	3.2	64
9	MALDIâ€ToF analysis of polythiophene: use of <i>trans</i> â€2â€{3â€{4â€ <i>t</i> â€butylâ€phenyl)â€2â€methylâ 2â€propenylidene]malononitrile—DCTB—as matrix. Journal of Mass Spectrometry, 2011, 46, 237-246.	ꀕ 0.7	62
10	Effective Cobalt-Mediated Radical Coupling (CMRC) of Poly(vinyl acetate) and Poly(<i>N</i> -vinylpyrrolidone) (Co)polymer Precursors. Macromolecules, 2010, 43, 2801-2813.	2.2	55
11	Dynamic Iminoboronateâ€Based Boroxine Chemistry for the Design of Ambient Humidityâ€Sensitive Selfâ€Healing Polymers. Chemistry - A European Journal, 2017, 23, 6730-6735.	1.7	54
12	Cobaltâ€Mediated Radical Coupling (CMRC): An Unusual Route to Midchainâ€Functionalized Symmetrical Macromolecules. Chemistry - A European Journal, 2010, 16, 1799-1811.	1.7	53
13	Rotaxaneâ€Based Mechanically Linked Block Copolymers. Angewandte Chemie - International Edition, 2011, 50, 9093-9096.	7.2	47
14	A tandem mass spectrometry-based method to assess the architectural purity of synthetic polymers: a case of a cyclic polylactide obtained by click chemistry. Polymer Chemistry, 2015, 6, 64-69.	1.9	47
15	Organocatalytic Coupling of CO ₂ with Oxetane. ChemSusChem, 2017, 10, 1128-1138.	3.6	45
16	Synthesis and Supramolecular Organization of Regioregular Polythiophene Block Oligomers. Journal of Organic Chemistry, 2010, 75, 1561-1568.	1.7	43
17	High Molecular Weight Poly(α,α′,β-trisubstituted β-lactones) As Generated by Metal-Free Phosphazene Catalysts Macromolecules, 2010, 43, 10291-10296.	2.2	43
18	Synthesis of End-Group Functionalized P3HT: General Protocol for P3HT/Nanoparticle Hybrids. Macromolecules, 2013, 46, 8500-8508.	2.2	43

#	Article	IF	CITATIONS
19	A New Class of Rigid Multi(azobenzene) Switches Featuring Electronic Decoupling: Unravelling the Isomerization in Individual Photochromes. Journal of the American Chemical Society, 2019, 141, 9273-9283.	6.6	43
20	Size Dependence of the Folding of Multiply Charged Sodium Cationized Polylactides Revealed by Ion Mobility Mass Spectrometry and Molecular Modelling. Chemistry - A European Journal, 2011, 17, 9738-9745.	1.7	41
21	Molecular diversity and body distribution of saponins in the sea star Asterias rubens by mass spectrometry. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2014, 168, 1-11.	0.7	40
22	Regioregular poly(3-hexylthiophene)-poly(ε-caprolactone) block copolymers: Controlled synthesis, microscopic morphology, and charge transport properties. Organic Electronics, 2010, 11, 767-774.	1.4	39
23	Polymers for Traveling Wave Ion Mobility Spectrometry Calibration. Journal of the American Society for Mass Spectrometry, 2017, 28, 2483-2491.	1.2	36
24	One-step synthesis of polylactide macrocycles from sparteine-initiated ROP. Polymer Chemistry, 2014, 5, 2103.	1.9	35
25	lmidazolium end-functionalized poly(l-lactide) for efficient carbon nanotube dispersion. Chemical Communications, 2010, 46, 5527.	2.2	34
26	Synthesis and characterisation of ï€-conjugated polymer/silica hybrids containing regioregular ionic polythiophenes. Journal of Materials Chemistry, 2011, 21, 2733.	6.7	34
27	Nitroxide mediated polymerization of methacrylates at moderate temperature. Polymer Chemistry, 2014, 5, 335-340.	1.9	31
28	Traces do matter—Purity of 4-methyl-2-oxetanone and its effect on anionic ring-opening polymerization as evidenced by phosphazene superbase catalysis. Reactive and Functional Polymers, 2012, 72, 509-520.	2.0	29
29	A supramolecular approach toward organo-dispersible graphene and its straightforward polymer nanocomposites. Journal of Materials Chemistry, 2012, 22, 18124.	6.7	29
30	Trifluoromethyl-Substituted Iridium(III) Complexes: From Photophysics to Photooxidation of a Biological Target. Inorganic Chemistry, 2018, 57, 1356-1367.	1.9	29
31	Ugi Three-Component Polymerization Toward Poly(α-amino amide)s. ACS Macro Letters, 2019, 8, 427-434.	2.3	29
32	Study of the controlled chainâ€growth polymerization of poly(3,6â€phenanthrene). Journal of Polymer Science Part A, 2013, 51, 5067-5074.	2.5	28
33	Noncovalent Interactions between ([18]Crownâ€6)â€Tetracarboxylic Acid and Amino Acids: Electrosprayâ€lonization Mass Spectrometry Investigation of the Chiralâ€Recognition Processes. Chemistry - A European Journal, 2008, 14, 11039-11049.	1.7	27
34	Mechanistic study of the collision-induced dissociation of sodium-cationized polylactide oligomers: A joint experimental and theoretical investigation. Journal of the American Society for Mass Spectrometry, 2010, 21, 1159-1168.	1.2	27
35	Correlation between the shape of the ion mobility signals and the stepwise folding process of polylactide ions. Journal of Mass Spectrometry, 2017, 52, 133-138.	0.7	25
36	Functional Polyethylene (PE) and PE-Based Block Copolymers by Organometallic-Mediated Radical Polymerization. Macromolecules, 2019, 52, 9053-9063.	2.2	25

Julien De Winter

#	Article	IF	CITATIONS
37	Discrimination of Regioisomeric and Stereoisomeric Saponins from <i>Aesculus hippocastanum</i> Seeds by Ion Mobility Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2019, 30, 2228-2237.	1.2	25
38	Inter- and intra-organ spatial distributions of sea star saponins by MALDI imaging. Analytical and Bioanalytical Chemistry, 2015, 407, 8813-8824.	1.9	24
39	Unique alternating peptide–peptoid copolymers from dipeptides via a Ugi reaction in water. Chemical Communications, 2017, 53, 12240-12243.	2.2	24
40	Metal-free synthesis of poly(trimethylene carbonate) by efficient valorization of carbon dioxide. Green Chemistry, 2019, 21, 472-477.	4.6	24
41	From Jellyfish Macromolecular Architectures to Nanodoughnut Self-Assembly. Macromolecules, 2010, 43, 575-579.	2.2	22
42	Synthesis and Characterization of Double Crystalline Cyclic Diblock Copolymers of Poly(εâ€caprolactone) and Poly(<scp>l</scp> (<scp>d</scp>)â€lactide) (<i>c</i> (PCLâ€ <i>b</i> ―PL(D)LA)). Macromolecular Rapid Communications, 2016, 37, 1676-1681.	2.0	22
43	Access to Biorenewable and CO ₂ -Based Polycarbonates from Exovinylene Cyclic Carbonates. ACS Sustainable Chemistry and Engineering, 2021, 9, 1714-1728.	3.2	22
44	Synthesis and characterization of carboxystyryl end-functionalized poly(3-hexylthiophene)/TiO2 hybrids in view of photovoltaic applications. Synthetic Metals, 2012, 162, 1615-1622.	2.1	21
45	Synthesis of poly[(4,4′-(dihexyl)dithieno(3,2-b;2′,3′-d)silole)] and copolymerization with 3-hexylthiophene: new semiconducting materials with extended optical absorption. Polymer Chemistry, 2013, 4, 4303.	1.9	21
46	Benzoic acid-organocatalyzed ring-opening (co)polymerization (ORO(c)P) of <scp>l</scp> -lactide and ε-caprolactone under solvent-free conditions: from simplicity to recyclability. Green Chemistry, 2018, 20, 5385-5396.	4.6	21
47	PEPDROID: Development of a Generic DREIDINGâ€Based Force Field for the Assessment of Peptoid Secondary Structures. Advanced Theory and Simulations, 2018, 1, 1800089.	1.3	21
48	Peculiar properties of homoleptic Cu complexes with dipyrromethene derivatives. Dalton Transactions, 2013, 42, 14188.	1.6	20
49	Reinvestigation of the mechanism of polymerization of β-butyrolactone from 1,5,7-triazabicyclo[4.4.0]dec-5-ene. Polymer Chemistry, 2018, 9, 1840-1847.	1.9	20
50	Atmospheric Aerosol Assisted Pulsed Plasma Polymerization: An Environmentally Friendly Technique for Tunable Catechol-Bearing Thin Films. Frontiers in Chemistry, 2019, 7, 183.	1.8	20
51	Differentiation of the pyridine radical cation from its distonic isomers by ion–molecule reactions with dioxygen. International Journal of Mass Spectrometry, 2009, 286, 83-88.	0.7	19
52	Control over molar mass, dispersity, end-groups and kinetics in cyclopolymerization of ortho-phthalaldehyde: adapted choice of a phosphazene organocatalyst. Polymer Chemistry, 2014, 5, 706-711.	1.9	19
53	The influence of the end-group on the chiral self-assembly of all-conjugated block copolymers. Polymer Chemistry, 2017, 8, 5666-5672.	1.9	19
54	Ethylene/vinyl acetate-based macrocycles <i>via</i> organometallic-mediated radical polymerization and CuAAC â€~click' reaction. Polymer Chemistry, 2018, 9, 273-278.	1.9	19

#	Article	IF	CITATIONS
55	Novel regioregular poly(3-hexylthiophene)-based polycationic block copolymers. Polymer Bulletin, 2011, 66, 51-64.	1.7	18
56	All-conjugated cationic copolythiophene "rod–rod―block copolyelectrolytes: synthesis, optical properties and solvent-dependent assembly. Polymer Chemistry, 2014, 5, 3352-3362.	1.9	18
57	ATRP-based polymers with modular ligation points under thermal and thermomechanical stress. Polymer Chemistry, 2015, 6, 2854-2868.	1.9	18
58	Simultaneous synthesis and chemical functionalization of emulsion-templated porous polymers using nitroxide-terminated macromolecular surfactants. Polymer Chemistry, 2017, 8, 1850-1861.	1.9	18
59	Merging CO ₂ -Based Building Blocks with Cobalt-Mediated Radical Polymerization for the Synthesis of Functional Poly(vinyl alcohol)s. Macromolecules, 2018, 51, 3379-3393.	2.2	18
60	Photocrosslinking between Peptide–Peptide or Peptide–Oligonucleotide by Ru ^{II} –TAP Complexes. Chemistry - A European Journal, 2012, 18, 355-364.	1.7	17
61	Halomethyl-cobalt(bis-acetylacetonate) for the controlled synthesis of functional polymers. Chemical Communications, 2015, 51, 14334-14337.	2.2	17
62	Synthesis and Transfer of Chirality in Supramolecular Hydrogen Bonded Conjugated Diblock Copolymers. Macromolecules, 2015, 48, 90-98.	2.2	17
63	Ion mobility mass spectrometry of saponin ions. Rapid Communications in Mass Spectrometry, 2019, 33, 22-33.	0.7	17
64	Homotropic Allosterism: Inâ€Depth Structural Analysis of the Gasâ€Phase Noncovalent Complexes Associating a Doubleâ€Cavity Cucurbit[<i>n</i>]urilâ€Type Host and Sizeâ€Selected Protonated Amino Compounds. ChemPlusChem, 2013, 78, 959-969.	1.3	16
65	Macrocyclic regioregular poly(3-hexylthiophene): from controlled synthesis to nanotubular assemblies. Polymer Chemistry, 2013, 4, 237-241.	1.9	16
66	A Sunlight-Induced Click Reaction as an Efficient Route to Cyclic Aliphatic Polyesters. Macromolecular Chemistry and Physics, 2015, 216, 1227-1234.	1.1	16
67	Energy-resolved collision-induced dissociation of non-covalent ions: charge- and guest-dependence of decomplexation reaction efficiencies. Physical Chemistry Chemical Physics, 2016, 18, 12557-12568.	1.3	16
68	Synthesis of Polyphthalaldehyde-Based Block Copolymers: Utilization of a Thermo-Sacrificial Segment for an Easy Access to Fine-Tuned Poly(3-hexylthiophene) Nanostructured Films. Macromolecules, 2016, 49, 3001-3008.	2.2	16
69	Converging Energy Transfer in Polynuclear Ru(II) Multiterpyridine Complexes: Significant Enhancement of Luminescent Properties. Inorganic Chemistry, 2018, 57, 2639-2653.	1.9	16
70	A Ru ^{II} -TAP Complex, Photoreagent for Tryptophan-Containing Peptides: Structure of the Covalent Photoadduct. Inorganic Chemistry, 2010, 49, 6796-6798.	1.9	15
71	Ni atalyzed Polymerization of Poly(3â€alkoxythiophene)s. Macromolecular Chemistry and Physics, 2011, 212, 328-335.	1.1	15
72	Photoaddition of Two Guanine Bases to Single Ru-TAP Complexes. Computational Studies and Ultrafast Spectroscopies to Elucidate the pH Dependence of Primary Processes. Journal of Physical Chemistry B, 2015, 119, 4488-4500.	1.2	15

#	Article	IF	CITATIONS
73	Influence of Equilibration Time in Solution on the Inclusion/Exclusion Topology Ratio of Host–Guest Complexes Probed by Ion Mobility and Collisionâ€Induced Dissociation. Chemistry - A European Journal, 2016, 22, 4528-4534.	1.7	15
74	Scope and limitations of ring-opening copolymerization of trimethylene carbonate with substituted γ-thiolactones. Polymer Chemistry, 2018, 9, 2769-2774.	1.9	15
75	Controlled Synthesis and Supramolecular Organization of Conjugated Star-Shaped Polymers. Macromolecules, 2018, 51, 8689-8697.	2.2	15
76	Collision-induced dissociation of polymer ions: Charge driven decomposition for sodium-cationized polylactides and isomeric end-group distinction. International Journal of Mass Spectrometry, 2011, 308, 11-17.	0.7	14
77	A Direct Method for Oxidizing Quinoxaline, Tetraazaphenanthrene, and Hexaazatriphenylene Moieties Using Hypervalent λ ³ -lodinane Compounds. Journal of Organic Chemistry, 2013, 78, 11096-11101.	1.7	14
78	Polyphthalaldehyde-block-polystyrene as a nanochannel template. Journal of Materials Chemistry B, 2014, 2, 3578.	2.9	14
79	Influence of the Grafting Density on the Self-Assembly in Poly(phenyleneethynylene)- <i>g</i> -poly(3-hexylthiophene) Graft Copolymers. Macromolecules, 2015, 48, 8789-8796.	2.2	14
80	Thermally Induced Coupling of Poly(thiophene)-Based Block Copolymers Prepared by Grignard Metathesis Polymerization: A Straightforward Route toward Highly Regioregular Multiblock Conjugated Copolymers. Macromolecules, 2012, 45, 6796-6806.	2.2	13
81	Study on the formation of a supramolecular conjugated graft copolymer in solution. Journal of Polymer Science Part A, 2014, 52, 804-809.	2.5	13
82	Influence of Structure of End-Group-Functionalized Poly(3-hexylthiophene) and Poly(3-octylselenophene) Anchored on Au Nanoparticles. Macromolecules, 2015, 48, 8752-8759.	2.2	13
83	Isotactic degradable polyesters derived from O-carboxyanhydrides of l-lactic and l-malic acid using a single organocatalyst/initiator system. European Polymer Journal, 2017, 95, 660-670.	2.6	13
84	Ready access to end-functional polystyrenes via a combination of ARGET ATRP and thiol–ene chemistry. Polymer Chemistry, 2015, 6, 6931-6935.	1.9	12
85	Energy transfer in poly(3â€hexylthiophene)â€ <i>g</i> â€Polyfluorene graft copolymers. Journal of Polymer Science Part A, 2016, 54, 1252-1258.	2.5	12
86	Macrocyclic P3HT Obtained by Intramolecular McMurry Coupling of Linear Bis-Aldehyde Polymer: A Direct Comparison with Linear Homologue. Macromolecules, 2017, 50, 1939-1949.	2.2	11
87	Synthesis and supramolecular organization of chiral poly(thiophene)–magnetite hybrid nanoparticles. Polymer Chemistry, 2018, 9, 3029-3036.	1.9	11
88	Synthesis, characterization and stereocomplexation of polyamide 11/polylactide diblock copolymers. European Polymer Journal, 2018, 98, 83-93.	2.6	11
89	One Step Further in the Characterization of Synthetic Polymers by Ion Mobility Mass Spectrometry: Evaluating the Contribution of End-groups. Polymers, 2019, 11, 688.	2.0	11
90	Diblock copolymers consisting of a redox polymer block based on a stable radical linked to an electrically conducting polymer block as cathode materials for organic radical batteries. Polymer Chemistry, 2019, 10, 2570-2578.	1.9	11

#	Article	IF	CITATIONS
91	Enzymatic Polycondensation of 1,6-Hexanediol and Diethyl Adipate: A Statistical Approach Predicting the Key-Parameters in Solution and in Bulk. Polymers, 2020, 12, 1907.	2.0	11
92	Pillar[5]arene-Based Polycationic Glyco[2]rotaxanes Designed as <i>Pseudomonas aeruginosa</i> Antibiofilm Agents. Journal of Medicinal Chemistry, 2021, 64, 14728-14744.	2.9	11
93	Synthesis of three series of ruthenium tris-diimine complexes containing acridine-based π-extended ligands using an efficient "chemistry on the complex―approach. Dalton Transactions, 2016, 45, 16298-16308.	1.6	10
94	Two ruthenium complexes capable of storing multiple electrons on a single ligand – photophysical, photochemical and electrochemical properties of [Ru(phen) ₂ (TAPHAT)] ²⁺ and [Ru(phen) ₂ (TAPHAT)Ru(phen) ₂] ⁴⁺ . Dalton Transactions, 2017, 46, 15287-15300.	1.6	9
95	Flying Cages in Traveling Wave Ion Mobility: Influence of the Instrumental Parameters on the Topology of the Host–Guest Complexes. Journal of the American Society for Mass Spectrometry, 2018, 29, 121-132.	1.2	9
96	Simultaneous "O–Alkyl―and "O–Acyl―Lactone Cleavages from Hydroxy–Carboxylic Acid Initiator Direct Access to Multiblock Architectures. Macromolecules, 2019, 52, 6382-6392.	^{rs:} 2.2	9
97	Synthesis and properties of a P3HT-based ABA triblock copolymer containing a perfluoropolyether central segment. Synthetic Metals, 2019, 252, 127-134.	2.1	9
98	Development of a Layered Hybrid Nanocomposite Material Using α,ï‰-Bifunctionalized Polythiophenes. Macromolecules, 2020, 53, 11098-11105.	2.2	9
99	Effects of electrospray mechanisms and structural relaxation on polylactide ion conformations in the gas phase: insights from ion mobility spectrometry and molecular dynamics simulations. Physical Chemistry Chemical Physics, 2020, 22, 4193-4204.	1.3	9
100	Accelerating effect of crown ethers on the lactide polymerization catalysed by potassium acetate. Catalysis Science and Technology, 2021, 11, 4387-4391.	2.1	9
101	Limitations of ion mobility spectrometryâ€mass spectrometry for the relative quantification of architectural isomeric polymers: A case study. Rapid Communications in Mass Spectrometry, 2020, 34, e8660.	0.7	8
102	Design of naturally inspired jellyfish-shaped cyclopolylactides to manage osteosarcoma cancer stem cells fate. Materials Science and Engineering C, 2020, 117, 111291.	3.8	8
103	Ugi four-component polymerization of amino acid derivatives: a combinatorial tool for the design of polypeptoids. Polymer Chemistry, 2021, 12, 2141-2151.	1.9	8
104	Photocontrolled lactide ROP by the light-regulated release of potassium acetate from an azobenzene-bridged crown ether. Catalysis Science and Technology, 2021, 11, 6048-6052.	2.1	8
105	Aromatic Substitution Reactions between Ionized Benzene Derivatives and Neutral Methyl Isocyanide. Journal of Physical Chemistry A, 2010, 114, 7408-7416.	1.1	7
106	Volatility profiles of monoterpenes loaded onto cellulosic-based materials. Industrial Crops and Products, 2013, 51, 100-106.	2.5	7
107	Detrimental <scp>N</scp> i(0) transfer in <scp>K</scp> umada catalyst transfer polycondensation of benzo[2,1â€ <scp><i>b</i></scp> :3,4â€ <scp><i>b</i></scp> ']dithiophene. Journal of Polymer Science Part A, 2016, 54, 1706-1712.	2.5	7
108	Nanoporous poly(3-hexylthiophene) thin films based on "click―prepared degradable diblock copolymers. RSC Advances, 2016, 6, 33468-33477.	1.7	7

#	Article	IF	CITATIONS
109	Merging supercritical carbon dioxide and organocatalysis for the precision and green synthesis of poly(lactide)-based (co)polymers. European Polymer Journal, 2017, 95, 635-649.	2.6	7
110	Extending the Scope of Benign and Thermally Stable Organocatalysts: Application of Dibenzoylmethane for the Bulk Copolymerization of <scp>l</scp> â€Lactide and É>â€Caprolactone. Journal of Polymer Science Part A, 2018, 56, 475-479.	2.5	7
111	Effect of the Nature and the Position of Defects on the Chiral Expression in Poly(3-alkylthiophene)s. Macromolecules, 2019, 52, 8587-8595.	2.2	7
112	Helicity of Peptoid Ions in the Gas Phase. Biomacromolecules, 2020, 21, 903-909.	2.6	7
113	Metastable Processes Investigated on an Orthogonal-Axis Time-of-Flight Instrument: Mass-Scale Calibration and Application. European Journal of Mass Spectrometry, 2009, 15, 431-437.	0.5	6
114	Controlled Polymerization of a Cyclopentadithiophene–Phenylene Alternating Copolymer. Macromolecules, 2018, 51, 9043-9051.	2.2	6
115	Silver ion induced folding of alkylamines observed by ion mobility experiments. International Journal of Mass Spectrometry, 2019, 435, 34-41.	0.7	6
116	Lipase-catalysed polycondensation of levulinic acid derived diol-diamide monomers: access to new poly(ester- <i>co</i> -amide)s. Polymer Chemistry, 2020, 11, 7506-7514.	1.9	6
117	How Spherical Are Gaseous Low Charged Dendrimer Ions: A Molecular Dynamics/Ion Mobility Study?. Journal of the American Society for Mass Spectrometry, 2020, 31, 1673-1683.	1.2	6
118	Metastable dimethyl phthalate molecular ions: Does the loss of a methoxyl radical proceed with or without anchimeric assistance?. International Journal of Mass Spectrometry, 2010, 290, 127-132.	0.7	5
119	Synthesis and photophysical studies of a multivalent photoreactive Ru ^{II} -calix[4]arene complex bearing RGD-containing cyclopentapeptides. Beilstein Journal of Organic Chemistry, 2018, 14, 1758-1768.	1.3	5
120	Reactive Extrusion and Magnesium (II) N-Heterocyclic Carbene Catalyst in Continuous PLA Production. Polymers, 2019, 11, 1987.	2.0	5
121	Efficient Convergent Energy Transfer in a Stereoisomerically Pure Heptanuclear Luminescent Terpyridine-Based Ru(II)–Os(II) Dendrimer. Inorganic Chemistry, 2020, 59, 14536-14543.	1.9	5
122	Internal Energy Effects on the Ion/Molecule Reactions of Ionized Methyl Isocyanide. European Journal of Mass Spectrometry, 2008, 14, 299-309.	0.5	4
123	Reactions of Ionized Methyl Benzoate with Methyl Isocyanide in the Gas Phase: Nucleophilic Aromatic Substitutions vs Hydrogen Migrations. Journal of Physical Chemistry A, 2009, 113, 11075-11083.	1.1	4
124	Parameters influencing the photo-induced electron transfer from tryptophan-containing peptides to a Ru ^{II} complex: a systematic study. Faraday Discussions, 2015, 185, 267-284.	1.6	4
125	Side-chain loss reactions of collisionally activated protonated peptoids: A mechanistic insight. International Journal of Mass Spectrometry, 2019, 435, 217-226.	0.7	4
126	Gasâ€phase structure of polymer ions: Tying together theoretical approaches and ion mobility spectrometry. Mass Spectrometry Reviews, 2023, 42, 1129-1151.	2.8	4

#	Article	IF	CITATIONS
127	Action-FRET of Î ² -cyclodextrin inclusion complexes. New Journal of Chemistry, 2017, 41, 1806-1812.	1.4	3
128	Backbone Cleavages of Protonated Peptoids upon Collision-Induced Dissociation: Competitive and Consecutive B-Y and A ₁ -Y _X Reactions. Journal of the American Society for Mass Spectrometry, 2019, 30, 2726-2740.	1.2	3
129	Catechol as a Universal Linker for the Synthesis of Hybrid Polyfluorene/Nanoparticle Materials. Macromolecules, 2021, 54, 4582-4591.	2.2	3
130	Helical Peptoid Ions in the Gas Phase: Thwarting the Charge Solvation Effect by H-Bond Compensation. Biomacromolecules, 2021, 22, 3543-3551.	2.6	3
131	Poly(L-lactide) Epimerization and Chain Scission in the Presence of Organic Bases. Macromol, 2022, 2, 236-246.	2.4	3
132	Synthesis and energy transfer in original poly(3-alkylthiophene)-g-poly(fluorene) toothbrush copolymers. Polymer, 2017, 112, 144-151.	1.8	2
133	Discrimination of positional isomers by ion mobility mass spectrometry: application to organic semiconductors. Analytical Methods, 2018, 10, 2303-2306.	1.3	2
134	Insights in the Ni-thiophene association in the synthesis of thiophene-para-phenylene block copolymers via Kumada catalyst transfer condensative polymerization. European Polymer Journal, 2019, 121, 109311.	2.6	2
135	Influence of Heterogeneity on the Chiral Expression of Star-Shaped Conjugated Polymers. Macromolecules, 2020, 53, 9254-9263.	2.2	2
136	Preparation of highly pure cyclo-polylactides by optimization of the copper-catalyzed azide-alkyne cycloaddition reaction. Polimery, 2017, 62, 283-290.	0.4	2
137	On the Conformation of Anionic Peptoids in the Gas Phase. Biomacromolecules, 2022, 23, 1138-1147.	2.6	2
138	Impact of the Hydrolysis and Methanolysis of Bidesmosidic Chenopodium quinoa Saponins on Their Hemolytic Activity. Molecules, 2022, 27, 3211.	1.7	2
139	Comparison of Matrix Assisted Laser Desorption/ Ionization Mass Spectrometry with Electrospray Ionisation Mass Spectrometry for the characterisation of semitelechelic polyethylene oxide. E-Polymers, 2010, 10, .	1.3	1
140	Assessing the Structural Heterogeneity of Isomeric Homo and Copolymers: an Approach Combining Ion Mobility Mass Spectrometry and Molecular Dynamics Simulations. Journal of the American Society for Mass Spectrometry, 2020, 31, 2379-2388.	1.2	1
141	Effect of poly(thiophene)s topology on their third-order nonlinear optical response. Polymer, 2021, 222, 123630.	1.8	1
142	The reaction of the hydrogen-bridged radical cation [NH2COHOCH2]•+ with dioxygen. International Journal of Mass Spectrometry, 2013, 354-355, 99-104.	0.7	0
143	Influence of the degree of polymerization and surface curvature on the supramolecular organization of fixated polythiophenes. Polymer, 2022, , 124846.	1.8	0