
Chih-Hung Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8822547/publications.pdf Version: 2024-02-01

Снин-Нимс Снамс

#	Article	IF	CITATIONS
1	Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper. International Journal of Heat and Mass Transfer, 2010, 53, 3357-3365.	2.5	174
2	Inkjet printed high-mobility indium zinc tin oxide thin film transistors. Journal of Materials Chemistry, 2009, 19, 3135.	6.7	139
3	High-rate synthesis of Cu–BTC metal–organic frameworks. Chemical Communications, 2013, 49, 11518.	2.2	127
4	Inkjet printed chalcopyrite CuInxGa1â^'xSe2 thin film solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 2616-2620.	3.0	110
5	Numerical Modeling of Sub-Wavelength Anti-Reflective Structures for Solar Module Applications. Nanomaterials, 2014, 4, 87-128.	1.9	100
6	Synthesis and post-processing of nanomaterials using microreaction technology. Journal of Nanoparticle Research, 2008, 10, 965-980.	0.8	99
7	Microwave assisted synthesis of Cu ₂ ZnSnS ₄ colloidal nanoparticle inks. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2186-2194.	0.8	68
8	Inkjet-Printed High Mobility Transparent–Oxide Semiconductors. Journal of Display Technology, 2009, 5, 520-524.	1.3	66
9	8.01% CuInGaSe2 solar cells fabricated by air-stable low-cost inks. Physical Chemistry Chemical Physics, 2012, 14, 11154.	1.3	64
10	Fabrication of high-performance, low-temperature solution processed amorphous indium oxide thin-film transistors using a volatile nitrate precursor. Journal of Materials Chemistry C, 2015, 3, 854-860.	2.7	63
11	Near-infrared absorption gas sensing with metal-organic framework on optical fibers. Sensors and Actuators B: Chemical, 2016, 232, 43-51.	4.0	61
12	Low-temperature, inkjet printed p-type copper(<scp>i</scp>) iodide thin film transistors. Journal of Materials Chemistry C, 2016, 4, 10309-10314.	2.7	59
13	Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces. Scientific Reports, 2016, 6, 23760.	1.6	54
14	Ultrashort Near-Infrared Fiber-Optic Sensors for Carbon Dioxide Detection. IEEE Sensors Journal, 2015, 15, 5327-5332.	2.4	49
15	Surface-Enhanced Infrared Absorption: Pushing the Frontier for On-Chip Gas Sensing. ACS Sensors, 2018, 3, 230-238.	4.0	49
16	Self-Assembly of Nanostructured Diatom Microshells into Patterned Arrays Assisted by Polyelectrolyte Multilayer Deposition and Inkjet Printing. Journal of the American Chemical Society, 2009, 131, 4178-4179.	6.6	48
17	Visible-light-sensitive Na-doped p-type flower-like ZnO photocatalysts synthesized via a continuous flow microreactor. RSC Advances, 2013, 3, 12702.	1.7	47
18	Plasmonics-enhanced metal–organic framework nanoporous films for highly sensitive near-infrared absorption. Journal of Materials Chemistry C, 2015, 3, 2763-2767.	2.7	41

#	Article	IF	CITATIONS
19	On the self-damping nature of densification in photonic sintering of nanoparticles. Scientific Reports, 2015, 5, 14845.	1.6	40
20	Reversible Insertion of Mgâ€Cl Superhalides in Graphite as a Cathode for Aqueous Dualâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 19924-19928.	7.2	39
21	Effects of fluid flow on the growth and assembly of ZnO nanocrystals in a continuous flow microreactor. CrystEngComm, 2013, 15, 3326.	1.3	36
22	Visible-light-sensitive nanoscale Au–ZnO photocatalysts. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	35
23	Continuous Microwave-Assisted Gas–Liquid Segmented Flow Reactor for Controlled Nucleation and Growth of Nanocrystals. Crystal Growth and Design, 2014, 14, 5349-5355.	1.4	34
24	Nanostructured ZnO as biomimetic anti-reflective coatings on textured silicon using a continuous solution process. Journal of Materials Chemistry, 2012, 22, 22906.	6.7	31
25	Metal–Organic Framework Thin Films: Fabrication, Modification, and Patterning. Processes, 2020, 8, 377.	1.3	31
26	Electron Microscopy and Optical Characterization of Cadmium Sulphide Nanocrystals Deposited on the Patterned Surface of Diatom Biosilica. Journal of Nanomaterials, 2009, 2009, 1-7.	1.5	30
27	Synthesis of colloidal PbSe nanoparticles using a microwave-assisted segmented flow reactor. Materials Letters, 2014, 128, 54-59.	1.3	30
28	Temperature, Crystalline Phase and Influence of Substrate Properties in Intense Pulsed Light Sintering of Copper Sulfide Nanoparticle Thin Films. Scientific Reports, 2018, 8, 2201.	1.6	29
29	Continuous synthesis of SnTe nanorods. Journal of Materials Chemistry, 2011, 21, 12218.	6.7	27
30	Modeling nanoscale temperature gradients and conductivity evolution in pulsed light sintering of silver nanowire networks. Nanotechnology, 2018, 29, 505205.	1.3	25
31	Curating Metal–Organic Frameworks To Compose Robust Gas Sensor Arrays in Dilute Conditions. ACS Applied Materials & Interfaces, 2020, 12, 6546-6564.	4.0	25
32	A grounded coplanar waveguide technique for microwave measurement of complex permittivity and permeability. IEEE Transactions on Magnetics, 2006, 42, 1929-1931.	1.2	24
33	High-rate synthesis of phosphine-stabilized undecagold nanoclusters using a multilayered micromixer. Nanotechnology, 2010, 21, 445604.	1.3	24
34	Aqueous Synthesis of Tailored ZnO Nanocrystals, Nanocrystal Assemblies, and Nanostructured Films by Physical Means Enabled by a Continuous Flow Microreactor. Crystal Growth and Design, 2014, 14, 4759-4767.	1.4	24
35	Multimodal characterization of solution-processed Cu ₃ SbS ₄ absorbers for thin film solar cells. Journal of Materials Chemistry A, 2018, 6, 8682-8692.	5.2	24
36	Rapid Pulsed Light Sintering of Silver Nanowires on Woven Polyester for personal thermal management with enhanced performance, durability and cost-effectiveness. Scientific Reports, 2018, 8, 17159.	1.6	24

#	Article	IF	CITATIONS
37	Segmented Microfluidic Flow Reactors for Nanomaterial Synthesis. Nanomaterials, 2020, 10, 1421.	1.9	23
38	Dense CdS thin films on fluorine-doped tin oxide coated glass by high-rate microreactor-assisted solution deposition. Thin Solid Films, 2013, 532, 16-21.	0.8	21
39	Room temperature fabrication and patterning of highly conductive silver features using in situ reactive inks by microreactor-assisted printing. Journal of Materials Chemistry C, 2015, 3, 7262-7266.	2.7	21
40	Plasmonic nanopatch array with integrated metal–organic framework for enhanced infrared absorption gas sensing. Nanotechnology, 2017, 28, 26LT01.	1.3	20
41	Thermal annealing activates amplified photoluminescence of germanium metabolically doped in diatom biosilica. Journal of Materials Chemistry, 2011, 21, 10658.	6.7	19
42	The synthesis of cadmium sulfide nanoplatelets using a novel continuous flow sonochemical reactor. Ultrasonics Sonochemistry, 2015, 26, 452-460.	3.8	19
43	Scalably synthesized environmentally benign, aqueous-based binary nanoparticle inks for Cu ₂ ZnSn(S,Se) ₄ photovoltaic cells achieving over 9% efficiency. Sustainable Energy and Fuels, 2017, 1, 267-274.	2.5	19
44	Continuous precipitation of ceria nanoparticles from a continuous flow micromixer. International Journal of Advanced Manufacturing Technology, 2013, 64, 579-586.	1.5	17
45	Biogenic silica based Zn2SiO4:Mn2+ and Y2SiO5:Eu3+ phosphor layers patterned by inkjet printing process. Journal of Materials Chemistry, 2008, 18, 3633.	6.7	16
46	Continuous, size and shape-control synthesis of hollow silica nanoparticles enabled by a microreactor-assisted rapid mixing process. Nanotechnology, 2017, 28, 235602.	1.3	16
47	Reversible Insertion of Mg l Superhalides in Graphite as a Cathode for Aqueous Dualâ€Ion Batteries. Angewandte Chemie, 2020, 132, 20096-20100.	1.6	16
48	Inkjetâ€Printed Ternary Oxide Dielectric and Doped Interface Layer for Metalâ€Oxide Thinâ€Film Transistors with Low Voltage Operation. Advanced Materials Interfaces, 2021, 8, 2100728.	1.9	16
49	Capillary Rise of Nanostructured Microwicks. Micromachines, 2018, 9, 153.	1.4	15
50	Tuning electronic and photocatalytic properties in pulsed light synthesis of Cu2ZnSnS4 films from CuS-ZnS-SnS nanoparticles. Materials Research Bulletin, 2020, 122, 110645.	2.7	15
51	Continuous synthesis of colloidal chalcopyrite copper indium diselenide nanocrystal inks. RSC Advances, 2014, 4, 16418-16424.	1.7	14
52	Microstructural Analysis of Additively Manufactured 304L Stainless Steel Oxide Dispersion Strengthened Alloy. Microscopy and Microanalysis, 2019, 25, 2594-2595.	0.2	14
53	Feasibility and Surface Evaluation of the Pigment from Scytalidium cuboideum for Inkjet Printing on Textiles. Coatings, 2019, 9, 266.	1.2	14
54	Downshifting and antireflective thin films for solar module power enhancement. Materials and Design, 2021, 201, 109454.	3.3	14

#	Article	IF	CITATIONS
55	Conformal growth of copper sulfide thin films on highly textured surface via microreactor-assisted solution deposition. CrystEngComm, 2015, 17, 2827-2836.	1.3	13
56	Continuous formation of a seed layer and vertical ZnO nanowire arrays enabled by tailored reaction kinetics in a microreactor. CrystEngComm, 2016, 18, 8645-8652.	1.3	13
57	Oxide dispersion strengthened 304 L stainless steel produced by ink jetting and laser powder bed fusion. CIRP Annals - Manufacturing Technology, 2020, 69, 193-196.	1.7	13
58	Synthesis of CulnSe2 nanocrystals using a continuous hot-injection microreactor. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	12
59	Continuous-Flow Photocatalytic Microfluidic-Reactor for the Treatment of Aqueous Contaminants, Simplicity, and Complexity: A Mini-Review. Symmetry, 2021, 13, 1325.	1.1	12
60	Inkjet Printing of Few‣ayer Enriched Black Phosphorus Nanosheets for Electronic Devices. Advanced Electronic Materials, 2021, 7, 2100577.	2.6	12
61	Low-cost & low-temperature curable solution-processed silica-based nanostructured antireflective coatings on Culn _{1â^'x} Ga _x Se ₂ thin film solar cells. RSC Advances, 2015, 5, 24712-24717.	1.7	10
62	Microfluidics-enabled rational design for Ag–ZnO nanocomposite films for enhanced photoelectrochemical performance. CrystEngComm, 2020, 22, 646-653.	1.3	10
63	Nucleation and growth of oriented metal-organic framework thin films on thermal SiO2 surface. Thin Solid Films, 2018, 659, 24-35.	0.8	9
64	Microfluidics for Two-Dimensional Nanosheets: A Mini Review. Processes, 2020, 8, 1067.	1.3	9
65	Nanostructured copper sulfide thin film <i>via</i> a spatial successive ionic layer adsorption and reaction process showing significant surface-enhanced infrared absorption of CO ₂ . Journal of Materials Chemistry C, 2020, 8, 3069-3078.	2.7	9
66	Investigation of CdS nanoparticles formation and deposition by the continuous flow microreactor. Applied Surface Science, 2019, 472, 158-164.	3.1	8
67	Two-step continuous-flow synthesis of CuInSe ₂ nanoparticles in a solar microreactor. RSC Advances, 2014, 4, 13827-13830.	1.7	7
68	The effects of gallium on solution-derived indium oxide-based thin film transistors manufactured on display glass. RSC Advances, 2015, 5, 93779-93785.	1.7	7
69	Microreactor-Assisted Solution Deposition for Compound Semiconductor Thin Films. Processes, 2014, 2, 441-465.	1.3	6
70	Characterization of Cotton Ball-like Au/ZnO Photocatalyst Synthesized in a Micro-Reactor. Micromachines, 2018, 9, 322.	1.4	6
71	Visible to infrared plasmonic absorption from silver nanostructures enabled by microreactor-assisted solution deposition. CrystEngComm, 2017, 19, 1265-1272.	1.3	4
72	Inkjet Printing and In-Situ Crystallization of Biopigments for Eco-Friendly and Energy-Efficient Fabric Coloration. International Journal of Precision Engineering and Manufacturing - Green Technology, 2022, 9, 941-953.	2.7	4

#	Article	IF	CITATIONS
73	Blue Luminescent Biogenic Silicon-Germanium Oxide Nanocomposites. Materials Research Society Symposia Proceedings, 2005, 873, 1.	0.1	3
74	Formation of zinc oxide films using submicron zinc particle dispersions. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 041805.	0.6	3
75	Fusion of Stacked Nanowires: From Atomistic to Analytical Models. Advanced Theory and Simulations, 2021, 4, 2100104.	1.3	3
76	Novel Multilayer Process for CulnSe2 Thin Film Formation by Rapid Thermal Processing. Materials Research Society Symposia Proceedings, 1997, 485, 163.	0.1	2
77	Bipolar resistive switching of zinc-tin-oxide resistive random access memory. , 2011, , .		2
78	Growth kinetics of copper sulfide thin films by photochemical deposition. CrystEngComm, 2016, 18, 6748-6758.	1.3	2
79	Hydrothermal synthesis and site symmetry tuning of polycrystalline YVO4:Eu nanoparticles via a continuous-flow microreactor. Nanotechnology, 2020, 31, 235603.	1.3	2
80	A Foam-Core Meniscus Coating Process for Retrofit Anti-Reflective Coatings. Journal of Micro and Nano-Manufacturing, 2019, 7, .	0.8	2
81	Synthesis of a 316L stainless steel-copper composite by laser melting. Additive Manufacturing Letters, 2022, 3, 100058.	0.9	2
82	Chemical Solution Based MoS2 Thin Film Deposition Based on Dimensional Reduction. Materials Research Society Symposia Proceedings, 2014, 1675, 215-218.	0.1	1
83	Growth Kinetics of ZnS Thin Films from a High-Rate Chemical Bath Deposition with Trisodium-Nitrilotriacetate Complexing. ECS Journal of Solid State Science and Technology, 2018, 7, P615-P623.	0.9	1
84	A Scalable Solution Route to Porous Networks of Nanostructured Black Tungsten. Nanomaterials, 2021, 11, 2304.	1.9	1
85	Biosynthesis and Electron Microscopy Characterization of Diatom Nanocomposites. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	0
86	Air-stable solution-deposited chalcopyrite Culn <inf>1−x</inf> Ga <inf>x</inf> Se <inf>2</inf> thin film solar cells. , 2011, , .		0
87	64-4:Invited Paper: Printed Metal Oxide Transistors. Digest of Technical Papers SID International Symposium, 2016, 47, 876-879.	0.1	0
88	On the unusual amber coloration of nanoporous sol-gel processed Al-doped silica glass: An experimental study. Scientific Reports, 2019, 9, 12474.	1.6	0
89	Nanocrystalline semiconductors for thin-film devices by microreactor-assisted chemical solution deposition. , 2021, , 167-194.		0